精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,AB∥CD,AB⊥AD,,PA⊥平面ABCD,PA=4.
(Ⅰ)设平面PAB∩平面PCD=m,求证:CD∥m;
(Ⅱ)求证:BD⊥平面PAC;
(Ⅲ)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为,求的值.

【答案】分析:(Ⅰ)利用平行四边形的性质和平行线的传递性即可找出两个平面的交线并且证明结论;
(Ⅱ)利用已知条件先证明BD⊥AC,再利用线面垂直的性质定理和判定定理即可证明;
(Ⅲ)通过结论空间直角坐标系,利用法向量与斜线所成的角即可找出Q点的位置.
解答:解:(Ⅰ)如图所示,过点B作BM∥PA,并且取BM=PA,连接PM,CM.
∴四边形PABM为平行四边形,∴PM∥AB,
∵AB∥CD,∴PM∥CD,即PM为平面PAB∩平面PCD=m,m∥CD.
(Ⅱ)在Rt△BAD和Rt△ADC中,由勾股定理可得
BD==,AC=
∵AB∥DC,∴

∴OD2+OC2==4=CD2
∴OC⊥OD,即BD⊥AC;
∵PA⊥底面ABCD,∴PA⊥BD.
∵PA∩AC=A,∴BD⊥平面PAC.
(Ⅲ)建立如图所示的空间直角坐标系,则A(0,0,0),
B(4,0,0),D(0,,0),C(2,,0),P(0,0,4).

,则Q(4λ,0,4-4λ),∴
,由(2)可知为平面PAC的法向量.
==
∵直线QC与平面PAC所成角的正弦值为
=
化为12λ=7,解得
=
点评:熟练掌握平行四边形的性质、平行线的传递性、线面垂直的性质定理和判定定理及法向量与斜线所成的角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案