精英家教网 > 高中数学 > 题目详情
如图,已知PO⊥平面ABCD,点O在AB上,EAPO,四边形ABCD是直角梯形,ABDC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在线段PE上是否存在一点M,使DM平面PBC,若存在求出点M;若不存在,说明理由.
证明:(Ⅰ)连接DO,BOCD且BO=CD,则四边形BODC是平行四边形,
故BCOD,又BC⊥AB,则BO⊥OD,因为PO⊥平面ABCD,
可知OD、OB、OP两两垂直,分别以OD、OB、OP为x、y、z轴建立空间直角坐标系.
设AO=1,则B(0,2,0),C(2,2,0),D(2,0,0),E(0,-1,1),P(0,0,2),
PE
=(0,-1,-1)
PB
=(0,2,-2)
BC
=(2,0,0)

PE
PB
=0
PE
BC
=0
,故PE⊥PB,PE⊥BC,又PB∩BC=B,
∴PE⊥平面PBC.
(Ⅱ)由(Ⅰ)可知,平面PBC的一个法向量
n1
=
PE
=(0,-1,-1)
,设面PBD的一个法向量为
n2
=(x,y,z)
PB
=(0,2,-2)
BD
=(2,-2,0)

n2
PB
=0
n2
BD
=0
2y-2z=0
2x-2y=0
n2
=(1,1,1)

cos<
n1
n2
>=
n1
n2
|
n1
|•|
n2
|
=
-2
2
3
=-
6
3

故二面角C-PB-D的大小为arccos
6
3

(Ⅲ)存在满足条件的点M.
由(Ⅰ)可知,向量
PE
是平面PBC的一个法向量,
若在线段PE上存在一点M,使DM平面PBC,设
PM
PE

DM
=
DP
+
PM
=(-2,0,2)+λ(0,-1,-1)=(-2,-λ,2-λ)
,由
DM
PE
=0

得λ-(2-λ)=0,∴λ=1,即M点与线段PE的端点E重合.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.
(Ⅰ)求证:直线SA平面BDE;
(Ⅱ)求直线BD与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中二面角A1-BD-C1的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标系中,A(-2,3),B(3,-2)沿x轴把直角坐标系折成90°的二面角,则此时线段AB的长度为(  )
A.2
5
B.
38
C.5
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥的三视图如图所示.

(1)求这个四棱锥的全面积及体积;
(2)求证:PA⊥BD;
(3)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30°?若存在,求
|DQ|
|DP|
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设正方体ABC-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是(  )
A.EF平面DPQ
B.二面角P-EF-Q所成角的最大值为
π
4
C.三棱锥P-EFQ的体积与y的变化有关,与x、z的变化无关
D.异面直线EQ和AD1所成角的大小与x、y的变化无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求证:MN⊥AB;
(2)求二面角P-CD-A的大小;
(3)求三棱锥D-AMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱AA1长为ka(k>0),E为侧棱BB1的中点,记以AD1为棱,EAD1,A1AD1为面的二面角大小为θ.
(1)是否存在k值,使直线AE⊥平面A1D1E,若存在,求出k值;若不存在,说明理由;
(2)试比较tanθ与2
2
的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,P是二面角α-AB-β棱AB上的一点,分别在α,β上引射线PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小是 ______.

查看答案和解析>>

同步练习册答案