精英家教网 > 高中数学 > 题目详情
已知点P(x0,y0)是圆C:(x-2)2+(y-2)2=8内一点(C为圆心),过P点的动弦AB.
(1)如果P(1,1),|AB|=2
7
,求弦AB所直线方程.
(2)如果P(1,1),当∠PAC最大时,求直线AP的方程.
(3)过A、B作圆的两切线相交于点M,求动点M的轨迹方程.
考点:直线和圆的方程的应用
专题:综合题,直线与圆
分析:(1)当AB⊥x时,a=2
7
,此时AB:x=1,由对称性可得另一条弦所在直线方程为y=1;
(2)由于以PC为直径的圆在圆C内,所以∠PAC为锐角,过C作PA的垂线,垂足为N,当NC最大时,∠PAC最大;
(3)求出圆C在A、B处的切线方程,可得AB的方程,点P(x0,y0)在AB上,即可得出结论.
解答: 解:(1)当AB⊥x时,a=2
7
,此时AB:x=1,由对称性可得另一条弦所在直线方程为y=1;
(2)由于以PC为直径的圆在圆C内,所以∠PAC为锐角,过C作PA的垂线,垂足为N,当NC最大时,∠PAC最大,
∵NC≤PC,
∴N,P重合时,∠PAC最大,
此时PA⊥PC,直线AP的方程为y=-x+2;
(3)设A(x1,y1),B(x2,y2),M(x′,y′),
圆C在A、B处的切线方程分别为:(x1-2)(x-2)+(y1-2)(y-2)=8,(x2-2)(x-2)+(y2-2)(y-2)=8,它们交于点M,
所以(x1-2)(x/-2)+(y1-2)(y/-2)=8(x2-2)(x/-2)+(y2-2)(y/-2)=8
∴AB的方程为(x-2)(x′-2)+(y-2)(y′-2)=8,
∵点P(x0,y0)在AB上,
∴(x0-2)(x′-2)+(y0-2)(y′-2)=8,
∴动点M的轨迹方程为(x0-2)(x′-2)+(y0-2)(y′-2)=8.
点评:本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求y=|x+2|-|x-2|的ymin,ymax

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=( 
3
,1),向量
b
=(sin2x,cos2x),函数f(x)=
a
b

(1)求函数f(x)的表达式,并作出函数y=f(x)在一个周期内的简图(用五点法列表描点);
(2)求函数y=f(x)的周期,并写单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与其导函数f′(x)满足f(x)-xf′(x)>0,则有(  )
A、f(1)>2f(2)
B、f(1)<2f(2)
C、2f(1)>f(2)
D、2f(1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:(
x-4
3
2≤4,q:x2-2x+1-m2≤0(m>0).
(1)分别求出命题p、命题q所表示的不等式的解集A,B;
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足条件a2+b2-2a-4b+1=0,则代数式
b
a+2
的取值范围是(  )
A、(0,
12
5
]
B、(0,
12
5
)
C、[0,
12
5
]
D、[0,
12
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=sin(sin2012°),b=sin(cos2012°),c=cos(sin2012°),d=cos(cos2012°),则a、b、c、d从小到大的顺序是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a+2,(a+1)2},若1∈A,则实数a的取值集合为(  )
A、{-1,0,-2}
B、{-2,0}
C、{-2,-1}
D、{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
2
3
,cosβ=-
3
4
,α∈(
π
2
,π),β是第三象限的角,
(1)求sin2α的值;
(2)求sin(2α+β)的值.

查看答案和解析>>

同步练习册答案