精英家教网 > 高中数学 > 题目详情
18.若三棱锥P-ABC的侧棱长PA=PB=PC,则点P在底面的射影O是△ABC的外心.

分析 根据从一点出发的斜线段,如果斜线段长相等,那么它们的射影长也相等得到,点P在底面的射影O到三角形三个顶点的距离相等,从而即可选出答案.

解答 解:如图,由题意得:
PA=PB=PC,
∴OA=OB=OC,
即O点是三角形ABC的外心,
故答案为外.

点评 本题主要考查了三角形的外心,三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心,即外心.外心到三顶点的距离相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知3是函数$f(x)=\left\{\begin{array}{l}{log_3}(x+t),x≥3\\{3^x},x<3\end{array}\right.$的一个零点,则f[f(6)]的值是(  )
A.4B.3C.2D.log34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,则$sin(\frac{2π}{7}+θ)$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=lg[f(x)-1]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知p:x2-x-2<0,q:[x-(1-m)]•[x-(1+m)]<0(m>0),若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sin(3π+α)=2sin$({\frac{3π}{2}+α})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)sin2α+sin 2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.长方体ABCD-A1B1C1D1中,若A1C与平面AB1D1相交于点M,则$\frac{{{A_1}M}}{{{A_1}C}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的是(  )
A.若a2>b2,则a>bB.若ac>bc,则a>bC.若$\frac{1}{a}>\frac{1}{b},则a<b$D.若$\sqrt{a}<\sqrt{b},则a<b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)(x∈R)有导函数,且?x∈R,f′(x)>f(x),n∈N*,则有(  )
A.enf(-n)<f(0),f(n)>enf(0)B.enf(-n)<f(0),f(n)<enf(0)
C.enf(-n)>f(0),f(n)>enf(0)D.enf(-n)>f(0),f(n)<enf(0)

查看答案和解析>>

同步练习册答案