精英家教网 > 高中数学 > 题目详情

【题目】我们称满足以下两个条件的有穷数列阶“期待数列”;①;②.

(1)若数列的通项公式是,试判断数列是否为2014阶“期待数列”,并说明理由;

(2)若等比数列阶“期待数列”,求公比及数列的通项公式;

(3)若一个等差数列既是()阶“期待数列”又是递增数列,求该数列的通项公式.

【答案】(1)是;(2);(3).

【解析】

(1)由通项公式,利用分组求和法可证明;从而可得结论;(2)先证明,由①,得,由②得,利用等比数列的通项公式可得结果;(3)设等差数列的公差为,根据既是()阶期待数列,求出首项与公差,利用等差数列的通项公式可得结果.

(1)∵

所以

所以数列为2014阶“期待数列”;

(2)若,由①得,,得,矛盾

,则由①,得,由②得

所以,,数列的通项公式为

(3)设等差数列的公差为

,∴,即

,由,得

由①、②知,两式相减得,∴

,得

∴数列的通项公式是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A01)且斜率为k的直线l与圆Cx2+y24x6y+120相交于MN两点

1)求实数k的取值范围;

2)求证:为定值;

3)若O为坐标原点,问是否存在直线l,使得,若存在,求直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果四面体的四条高交于一点,则该点称为四面体的垂心,该四面体称为垂心四面体.

1)证明:如果四面体的对棱互相垂直,则该四面体是垂心四面体;反之亦然.

2)给出下列四面体

①正三棱锥;

②三条侧棱两两垂直;

③高在各面的射影过所在面的垂心;

④对棱的平方和相等.

其中是垂心四面体的序号为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:已知实数,若关于不等式非空解集,则写出该命题的逆命题否命题、逆否命题,并判断这些命题的真假.

查看答案和解析>>

同步练习册答案