分析 (1)分别求出关于p,q的不等式,根据p真且q真取交集即可;(2)由p是q的充分不必要条件,得到关于a的不等式,解出即可.
解答 解:(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
又a>0,所以a<x<3a,
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
由实数x满足$\frac{x-3}{x+2}<0$
得-2<x<3,即q为真时实数x的取值范围是-2<x<3.
若p∧q为真,则p真且q真,所以实数x的取值范围是1<x<3.-----(5分)
(2)?q是?p的充分不必要条件,即p是q的充分不必要条件
由a>0,及3a≤3得0<a≤1,所以实数a的取值范围是0<a≤1.------(10分)
点评 本题考查了充分必要条件,考查集合的包含关系,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{5}$ | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | $\frac{11}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2016}{4033}$ | B. | -$\frac{4032}{4031}$ | C. | $\frac{2016}{4031}$ | D. | -$\frac{2016}{4031}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | {2} | C. | {3,4} | D. | {1,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}+3}{2}$ | B. | $\sqrt{5}$+3 | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com