精英家教网 > 高中数学 > 题目详情

【题目】集合M={x|﹣2≤x≤2,N=y|0≤y≤2}.给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系是

【答案】B
【解析】解:如图,由函数的定义知,(A)定义域为[﹣2,0],不是[﹣2,2];(C)不是唯一对应,故不是函数;(D)值域不是[0,2];所以答案是B.

【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若抛物线的焦点是椭圆左顶点,求此抛物线的标准方程;

(2)若某双曲线与椭圆共焦点,且以为渐近线,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所中学14所大学7所现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查

求应从小学、中学、大学中分别抽取的学校数目

若从抽取的6所学校中随机抽取2所学校做进一步数据分析

(1)列出所有可能的抽取结果

(2)求抽取的2所学校均为小学的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣x,
(1)用分段函数的形式表示该函数,并画出该函数的图象;
(2)写出该函数的值域、单调区间(不要求证明);
(3)若对任意x∈R,不等式|2x﹣1|≥a+x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;

(2)试估计这批小龙虾的平均重量;

(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:

等级

一等品

二等品

三等品

重量(

单价(元/只)

1.2

1.5

1.8

试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=af1(x)+bf2(x),那么称h(x)为f1(x)、f2(x)的和谐函数.
(1)已知函数f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,试判断h(x)是否为f1(x)、f2(x)的和谐函数?并说明理由;
(2)已知h(x)为函数f1(x)=log3x,f2(x)=log x的和谐函数,其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;

(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

同步练习册答案