精英家教网 > 高中数学 > 题目详情
6.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{{\sqrt{5}}}{3}$

分析 设线段PF1的中点为M,另一个焦点F2,利用OM是△FPF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.

解答 解:设线段PF1的中点为M,另一个焦点F2
由题意知,OM=b,又OM是△FPF1的中位线,
∴OM=$\frac{1}{2}$PF2=b,PF2=2b,由椭圆的定义知  PF1=2a-PF2=2a-2b,
又MF1=$\frac{1}{2}$PF1=$\frac{1}{2}$(2a-2b)=a-b,又OF1=c,
直角三角形OMF1中,由勾股定理得:(a-b)2+b2=c2,又a2-b2=c2
可得2a=3b,故有4a2=9b2=9(a2-c2),由此可求得离心率 e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
故选:D.

点评 本题考查椭圆的离心率的求法,注意运用离心率公式和椭圆的定义:椭圆上任一点到两个焦点的距离之和等于常数2a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:x2=2px的准线方程y=-$\frac{1}{2}$,该抛物线上的每个点到准线的距离都与到定点N的距离相等.
(1)求以N为圆心且与直线y=x相切的方程;
(2)经过点N的直线交抛物线C于A、B两点,点E在抛物线的准线上,且BE∥y轴.证明:直线AE经过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=2x3-3x2-12x+2+m至少有两个零点,则实数m的取值范围是[-9,18].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α角为第二象限角,点P(k,3)在α的终边上,且OP=5,求cosα、tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P在椭圆C上,求P到直线x-2y+3$\sqrt{2}$=0的距离的最大值和最小值,并求出取最大值或最小值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是公比q大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=lna2n+1,n=1,2,3,…,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=mx2+3(m-4)x-9.
(1)试判断函数f(x)零点的个数;
(2)若满足f(1-x)=f(1+x),求m的值;
(3)若m=1时,x∈[0,2]上存在x使f(x)-a>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若过点P(5,-2)的双曲线的两条渐近线方程为x-2y=0和x+2y=0,则该双曲线的实轴长为6.

查看答案和解析>>

同步练习册答案