A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
分析 设线段PF1的中点为M,另一个焦点F2,利用OM是△FPF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.
解答 解:设线段PF1的中点为M,另一个焦点F2,
由题意知,OM=b,又OM是△FPF1的中位线,
∴OM=$\frac{1}{2}$PF2=b,PF2=2b,由椭圆的定义知 PF1=2a-PF2=2a-2b,
又MF1=$\frac{1}{2}$PF1=$\frac{1}{2}$(2a-2b)=a-b,又OF1=c,
直角三角形OMF1中,由勾股定理得:(a-b)2+b2=c2,又a2-b2=c2,
可得2a=3b,故有4a2=9b2=9(a2-c2),由此可求得离心率 e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
故选:D.
点评 本题考查椭圆的离心率的求法,注意运用离心率公式和椭圆的定义:椭圆上任一点到两个焦点的距离之和等于常数2a.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com