【题目】设函数,.
(1)当时,求函数在点处的切线方程;
(2)是函数的极值点,求函数的单调区间;
(3)在(2)的条件下,,若,,使不等式恒成立,求的取值范围.
【答案】(1);(2)在上单调递增,在上单调递减;(3)
【解析】
(1)求出函数的导数,再求出,,由导数得几何意义知切线的斜率为且过点,即可写出直线的点斜式方程;(2)由是函数的极值点可知,求出,令结合定义域即可求出函数的单调区间;(3)令,则题意等价于,利用分析的单调性从而求出最小值为4,所以使得函数,由在有解即可求出的取值范围.
(1)的定义域为,时,,,
,,所以切线方程为,即.
(2),
是函数的极值点,,可得,
所以,令,即,
解得,结合定义域可知在上单调递增,在上单调递减.
(3)令,,,
使得恒成立,等价于,
,
因为,所以,,即,
所以在上单调递增,,
即使得函数,即转化为在有解,
,所以,.
科目:高中数学 来源: 题型:
【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于,两点,关于轴的对称点为.
(1)求抛物线的方程;
(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,有以下三个结论:
①函数恒有两个零点,且两个零点之积为;
②函数的极值点不可能是;
③函数必有最小值.
其中正确结论的个数有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,对于,,定义与的差为;与之间的距离为.
(1)若,试写出所有可能的,;
(2),证明:;
(3),三个数中是否一定有偶数?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程
在直角坐标系中,圆,曲线的参数方程为为参数),并以为极点, 轴正半轴为极轴建立极坐标系.
(1)写出的极坐标方程,并将化为普通方程;
(2)若直线的极坐标方程为与相交于两点,
求的面积(为圆的圆心).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy上取两个定点A1(,0),A2(,0),再取两个动点N1(0,m),N2(0,n),且mn=2.
(1)求直线A1N1与A2N2交点M的轨迹C的方程;
(2)过R(3,0)的直线与轨迹C交于P,Q,过P作PN⊥x轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若(λ>1),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为、,当动点在定直线上运动时,直线分别交椭圆于两点、,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com