【题目】
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为,求的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.
(1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知拋物线C:经过点,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ求抛物线C的方程以及焦点坐标;
Ⅱ若与的面积相等,证明直线l与抛物线C相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系内,已知是以点为圆心的圆上的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使得,其中点、,则的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是以为焦点的抛物线,是以直线与的渐近线,以为一个焦点的双曲线.
(1)求双曲线的标准方程;
(2)若与在第一象限有两个公共点,求的取值范围,并求的最大值;
(3)是否存在正数,使得此时的重心恰好在双曲线的渐近线上?如果存在,求出的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A(0,﹣3),点M满足|MA|=2|MO|.
(1)求点M的轨迹方程;
(2)若圆C:(x﹣c)2+(y﹣c+1)2=1,判断圆C上是否存在符合题意的M;
(3)设P(x1,y1),Q(x2,y2)是点M轨迹上的两个动点,点P关于点(0,1)的对称点为P1,点P关于直线y=1的对称点为P2,如果直线QP1,QP2与y轴分别交于(0,a)和(0,b),问(a﹣1)(b﹣1)是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级有1000人,某次考试不同成绩段的人数,且所有得分都是整数.
(1)求全班平均成绩;
(2)计算得分超过141的人数;(精确到整数)
(3)甲同学每次考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若在处的切线与直线平行,求的值;
(2)讨论函数的单调区间;
(3)若函数的图象与轴交于A,B两点,线段AB中点的横坐标为,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax
(1)讨论函数f(x)的单调性;
(2)若存在x1<x2,且满足f(x1)=(x2).证明;
(3)证明:(n∈N).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com