精英家教网 > 高中数学 > 题目详情
2.将函数y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个单位后,所得图象对应的解析式是(  )
A.y=cos2x+sin2xB.y=sin2x-cos2xC.y=cos2x-sin2xD.y=cosxsinx

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位后,
所得图象对应的解析式是y=$\sqrt{2}$sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=sin2x-cos2x,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将函数f(x)=log2(3x+2)-1的图象向上平移1个单位,再向右平移2个单位后得到函数g(x),那么g(x)的表达式为g(x)=log2(3x-4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,长轴为2$\sqrt{3}$,则椭圆C的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列命题:①函数f(x)=4cos(2x+$\frac{π}{3}$)+1的一个对称中心为(-$\frac{5π}{12}$,0);②函数y=f(1-x)与y=f(x-1)的图象关于x=0对称;③命题“?x>0,x2+2x-3>0”的否定是“?x≤0,x2+2x-3≤0”;④若α,β均为第一象限角,且α>β,则sinα>sinβ,其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,其弦AB的中点为M,若直线AB和OM的斜率都存在(O为坐标原点),则两条直线的斜率之积为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,空间四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=$\frac{2}{3}$$\overrightarrow{OA}$,点N为BC中点,则$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}\vec a-\frac{2}{3}\vec b+\frac{1}{2}\vec c$B.$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$C.$\frac{1}{2}\vec a+\frac{1}{2}\vec b-\frac{1}{2}\vec c$D.$\frac{2}{3}\vec a+\frac{2}{3}\vec b-\frac{1}{2}\vec c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(1,0),点($\frac{3\sqrt{2}}{2}$,2)在椭圆上.
(I)求椭圆的离心率;
(II)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,求证:△PF2Q的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将$\root{3}{2^2}$化成分数指数幂为(  )
A.${2^{\frac{3}{2}}}$B.$2^{-\frac{1}{2}}$C.$2^{\frac{1}{3}}$D.$2^{\frac{2}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设条件p:实数x满足x2-3ax+2a2<0(a>0);条件q:实数x满足x2-5x+4>0,且命题“若p,则q”的逆否命题为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案