精英家教网 > 高中数学 > 题目详情

已知函数,且
(1)求
(2)判断的奇偶性;
(3)判断上的单调性,并证明。

(1); (2)为偶函数;(3)单调递减。

解析试题分析:(1).,      解得:
(2),定义域为
 ,所以为偶函数
(3)
,则,则单调递减
考点:指数函数的性质,函数的奇偶性、单调性,应用导数研究函数的单调性。
点评:中档题,本题解答思路明确,通过布列方程组求得a,b的值。判断函数的奇偶性,主要应用奇偶函数的定义。在某区间,导数值非负,函数为增函数,导数值非正,函数为减函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[)时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)求函数的单调区间;
(2)若当恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+(x>0)在区间(0,2)上递减;
(1)函数f(x)=x+(x>0)在区间                  上递增.
当x=                 时,y最小=                         .
(2)证明:函数f(x)=x+在区间(0,2)上递减.
(3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求在图象与轴交点处的切线方程;
(2)若在(1,2)上为单调函数,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案