【题目】已知函数,则下列判断正确的是( )
A.为奇函数
B.对任意,,则有
C.对任意,则有
D.若函数有两个不同的零点,则实数m的取值范围是
【答案】CD
【解析】
根据函数的奇偶性以及单调性判断AB选项;对进行分类讨论,判断C选项;对选项D,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m的取值范围.
对于A选项,当时,,则
所以函数不是奇函数,故A错误;
对于B选项,的对称轴为,的对称轴为
所以函数在区间上单调递增,函数在区间上单调递增,并且
所以在上单调递增
即对任意,都有
则,故B错误;
对于C选项,当时,,则
则
当时,,则
当时,,则
则
即对任意,则有,故C正确;
对于D选项,当时,,则不是该函数的零点
当时,
令函数,函数
由题意可知函数与函数的图象有两个不同的交点
因为时,,时,
所以
当时,设,
因为,所以,即
设,,即
所以函数在区间上单调递减,在区间上单调递增
同理可证,函数在区间上单调递减,在区间上单调递增
函数图象如下图所示
由图可知,要使得函数与函数的图象有两个不同的交点
则实数m的取值范围是,故D正确;
故选:CD
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x=0.
(1)直线l的方程为,直线l交圆C于A、B两点,求弦长|AB|的值;
(2)从圆C外一点P(4,4)引圆C的切线,求此切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )
(参考数据:)
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得DE,DO,DF成等比数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
公司对近60天,每天揽件数量统计如下表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点.
(1)求异面直线DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d表示停车距离,表示反应距离,表示制动距离,则.下图是根据美国公路局公布的试验数据制作的停车距离示意图,对应的汽车行驶的速度与停车距离的表格如下图所示
序号 | |||||||
(1)根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型一:或模型二:(其中v为汽车速度,a,b
(2)通过计算时的停车距离,分析选择哪一个函数模型的拟合效果更好.
(参考数据:;;.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C: (a>b>0)的左、右焦点分别为F1、F2,若椭圆C经过点(0,),离心率为,直线l过点F2与椭圆C交于A、B两点.
(1)求椭圆C的方程;
(2)若点N为△F1AF2的内心(三角形三条内角平分线的交点),求△F1NF2与△F1AF2面积的比值;
(3)设点A,F2,B在直线x=4上的射影依次为点D,G, E.连结AE,BD,试问当直线l的倾斜角变化时,直线AE与BD是否相交于定点T?若是,请求出定点T的坐标;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com