【题目】已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则的值为( )
A. - B. -2
C. -2或- D. 2或-
【答案】A
【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,
∴a2+8a+12=0,
∴a=﹣2,b=1或a=﹣6,b=9.
当a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),
当<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值,与题意不符;
当a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)
当x<1时,f′(x)>0,当1<x<3时,f′(x)<0,
∴f(x)在x=1处取得极大值,符合题意;
∴=﹣.
故选A.
科目:高中数学 来源: 题型:
【题目】已知两点分别在轴和轴上运动,且,若动点满足.
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆点, 是圆上任意一点,线段的垂直平分线和半径相交于点。
(Ⅰ)当点在圆上运动时,求点的轨迹方程;
(Ⅱ)直线与点的轨迹交于不同两点和,且(其中 O 为坐标
原点),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,AA1⊥平面ABC,AA1=2,M为A1B1的中点.
(1)求证:MC⊥AB;
(2)在棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,确定点P的位置;若不存在,说明理由.
(3)若点P为CC1的中点,求二面角B-AP-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;
(2)求证:在(1)的条件下,当x>1时, x2+ax-a>xlnx+成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中, ,点为的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,则点A到平面SBC的距离为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com