精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3=ax2-4x+3(x∈R).
(1)当a=2时求f(x)在点(1,f(1))处的切线方程
(2)若函数f(x)在区间(1,2)上为减函数,求实数a的取值范围..
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:计算题,函数的性质及应用,导数的综合应用
分析:(1)a=2时,f(x)=x3+2x2-4x+3,f′(x)=3x2+4x-4;从而求得f′(1)=3,f(1)=2;从而写出切线方程.
(2)求导f′(x)=3x2+2ax-4;从而由f(x)在区间(1,2)上单调递减可得f′(x)≤0在(1,2)上恒成立;从而可得a≤
2
x
-
3
2
x,令h(x)=
2
x
-
3
2
x,从而化为最值问题.
解答: 解:(1)a=2时,f(x)=x3+2x2-4x+3,f′(x)=3x2+4x-4;
故f′(1)=3,f(1)=2;
故所求切线方程为y=3(x-1)+2,
即3x-y-1=0.
(2)∵f(x)=x3=ax2-4x+3,
∴f′(x)=3x2+2ax-4;
∵f(x)在区间(1,2)上单调递减,
∴f′(x)≤0在(1,2)上恒成立;
即3x2+2ax-4≤0,
即a≤
2
x
-
3
2
x,令h(x)=
2
x
-
3
2
x,
又由hmin(x)=h(2)=-2;
故a≤-2;
故实数a的取值范围为(-∞,-2].
点评:本题考查了导数的综合应用及恒成立问题的处理方法应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,若函数y=ex+ax,x∈R,有大于-1的极值点,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,A1是点A(-4,3,1)关于y轴的对称点,则|AA1|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P做x轴的垂线与射线y=
3
x(x≥0)交于点Q,求
OP
OQ
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足a2+b2=1,则a
1+b2
的最大值是
 
,此时a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

京广高铁的贯通,带动了沿线某站点所在市旅游业的发展.在车站附近,有一块边长为100m的正方形地皮,如图ABCD所示,其中AST是一半径为90m的扇形小山,其余部分都是平地.市政府决定在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积S的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x 
1
3
-
1
2x
的零点所在的区间是(  )
A、(0,
1
4
B、(
1
4
1
3
C、(
1
3
1
2
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)-1为奇函数,且f(x)的最大值为M,最小值为N,则有(  )
A、M-N=4
B、M-N=2
C、M+N=2
D、M+N=4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={x|x-2=0},N={x|x>1},则(  )
A、M=NB、M⊆N
C、M?ND、M与N无包含关系

查看答案和解析>>

同步练习册答案