精英家教网 > 高中数学 > 题目详情

【题目】ABC的内角ABC的对边分别为abc,已知

1)求C

2)若c=ABC的面积为,求ABC的周长.

【答案】(1) C= (2) ABC的周长为+

【解析】试题分析:(1)由正弦定理得到2cosCsinC=sinC,进而得到cosC=C=;(2)根据第一问的已求角,可由余弦定理得到a+b23ab=3,根据面积公式得到ab=16,结合第一个式子得到结果。

解析:

△ABC中,0Cπ∴sinC≠0

利用正弦定理化简得:2cosCsinAcosB+sinBcosA=sinC

整理得:2cosCsinA+B=sinC

2cosCsinπ﹣A+B))=sinC,2cosCsinC=sinC

cosC=C=

)由余弦定理得3=a2+b22ab

a+b2﹣3ab=3

S= absinC= ab= ab=16

a+b248=3a+b=

∴△ABC的周长为+ .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程x必过();

④在一个2×2列联表中,由计算得K2=13.079,则有99%以上的把握认为这两个变量间有关系.

其中错误的个数是(  )

本题可以参考独立性检验临界值表:

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1l2,山区边界曲线为C,计划修建的公路为l,如图所示,MNC的两个端点,测得点Ml1l2的距离分别为5千米和40千米,点Nl1l2的距离分别为20千米和2.5千米,以l2l1所在的直线分别为xy轴,建立平面直角坐标系xOy,假设曲线C符合函数y (其中ab为常数)模型.

(1)求ab的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式f(t),并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是直角梯形 平面

上是否存在点使平面若存在指出的位置并证明若不存在请说明理由;()证明:

)若求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体中, 的中点,如图所示.

(1) 证明: 平面;

(2) 求平面与平面所成锐二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题:对,不等式恒成立;命题,使得成立.

(1)若为真命题,求的取值范围;

(2)当时,若假, 为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,f(x)=2sin(xA)cosx+sin(BC)(x∈R),函数f(x)的图象关于点对称.

(1)当时,求f(x)的值域;

(2)若a=7且,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,讨论函数图像的交点个数.

查看答案和解析>>

同步练习册答案