精英家教网 > 高中数学 > 题目详情

【题目】数列{an}中,已知对任意n∈N* , a1+a2+a3+…+an=3n﹣1,则a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

【答案】B
【解析】解:∵a1+a2+a3+…+an=3n﹣1,①
∴a1+a2+a3+…+an+1=3n+1﹣1,②
②﹣①得:an+1=3n+1﹣3n=2×3n
∴an=2×3n1
当n=1时,a1=31﹣1=2,符合上式,
∴an=2×3n1
=4×9n1
=4, =9,
∴{ }是以4为首项,9为公比的等比数列,
∴a12+a22+a32+…+an2= = (9n﹣1).
故选B.
【考点精析】关于本题考查的数列的前n项和,需要了解数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:x2+4y2=16,点M(2,1).
(1)求椭圆C的焦点坐标和离心率;
(2)求通过M点且被这点平分的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1中,M,N分别为棱AB,DD1的中点,异面直线A1M和C1N所成的角为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,△BCD为正三角形,现将△BCD沿BD向上折起,折起后的点C记为C′,且CC′= ,连接CC′,E为CC′的中点.

文科:
(1)求证:AC′∥平面BDE;
(2)求证:CC′⊥平面BDE;
(3)求三棱锥C′﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 平面 ,点在棱上,且.建立如图所示的空间直角坐标系.

(1)当时,求异面直线的夹角的余弦值;

(2)若二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆方程:
(1)长轴在x轴上,长轴长等于12,离心率等于
(2)椭圆经过点(﹣6,0)和(0,8);
(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),),且在点处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)若函数在区间内有且仅有一个极值点,求的取值范围;

(Ⅲ)设)为两曲线),的交点,且两曲线在交点处的切线分别为 .若取,试判断当直线 轴围成等腰三角形时值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

同步练习册答案