在长方体
中,AB=BC=2,
则
与面
所成角的正弦值为( )
解:连接A
1C
1交B
1D
1于O,连接BO,则
∵长方体
中,AB=BC=2
∴C
1O⊥平面BD B
1D
1∴∠C
1BO为BC
1与平面BD B
1D
1所成角
∵C
1O=
A
1C
1=" 2" ,BC
1=
∴sin∠C
1BO=C
1O: BC
1 =
故答案为:
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
如图,在三棱拄
中,
侧面
,已知
(1)求证:
;(4分)
(2)、当
为
的中点时,求二面角
的平面角的正切值.(8分)
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
若
、
是直线,
、
是平面,
,向量
在
上,向量
在
上,
,
,则
、
所成二面角中较小的一个余弦值为
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
在正三棱柱
中,AB=1,若二面角
的大小为60°,则点
到平面
的距离为 ( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
已知直线
与平面
所成的角为30°,
为空间一定点,过
作与
、
所成的角都是45°的直线
,则这样的直线
可作( )条
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
如图,已知平行四边形
和矩形
所在的平面互相垂直,
,
是线段
的中点.
(Ⅰ)求二面角
的正弦值;
(Ⅱ)设点
为一动点,若点
从
出发,沿棱按照
的路线运动到点
,求这一过程中形成的三棱锥
的体积的最小值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
如图所示,
是直三棱柱,
,点
、
分别是
,
的中点,若
,则
与
所成角的余弦值是( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
如图,在直三棱柱
中,
,
,
,
,
为侧棱
上一点,且
。
求证:
平面
;
求二面角
的大小。
查看答案和解析>>