精英家教网 > 高中数学 > 题目详情
设经过点(-4,0)的直线l与抛物线y=
1
2
x2的两个交点为A,B,经过A,B两点分别作抛物线的切线,若两切线互相垂直,则直线l的斜率为多少?
考点:利用导数研究曲线上某点切线方程,抛物线的简单性质
专题:导数的综合应用,圆锥曲线的定义、性质与方程
分析:对抛物线y=
1
2
x2
,y′=x,l的方程是y=k(x+4),代入y=
1
2
x2
得:x2-2kx-8k=0,由此利用根的判别式、韦达定理和直线垂直的性质能求出直线的斜率.
解答: 解:对抛物线y=
1
2
x2
,y′=x,
l的方程是y=k(x+4),代入y=
1
2
x2
得:x2-2kx-8k=0,
设两个切点是A(x1,y1),B(x2,y2),
若PA与PB垂直,
则x1•x2=-8k=-1,
∴k=
1
8

即直线l的斜率为
1
8
点评:本题考查直线的斜率的求法,是中档题,解题时要注意抛物线性质和导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=1+2i,则z的模为(  )
A、-1+
2
B、
3
C、1+
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,则“a>b”是“
a+b
2
ab
”成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(c)满足:对任意的x,y,都有f(x+y)=f(x)+f(y)-b成立,设M、N分别是f(x)在[-b,b]上的最大值与最小值,则M+N的值为(  )
A、
3
B、2
C、2
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.
(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.
(2)若直线l与椭圆
3y2
4
+
3x2
2
=1的交点为C,D,问是否存在这样的直线l使|AF|•|CF|=|BF|•|DF|,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
,F2是其右焦点,F1为左焦点也是抛物线y2=-4x的焦点,过F1的直线L与椭圆交于A、B两点,与抛物线交于C、D两点,当直线L与x轴垂直时
|CD|
|AB|
=2
2

(1)求椭圆的方程;
(2)求
F1A
F2B
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一根水平放置的长方体形枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比.
(1)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷如何变化?为什么?(设翻转前后枕木的安全负荷分别为y1,y2且翻转前后的比例系数相同,都为同一正常数k)
(2)现有一根横断面为半圆(已知半圆的半径为R)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为d为多少时,可使安全负荷y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,6),F2为椭圆
x2
25
+
y2
16
=1的右焦点,点M在椭圆上,求|MP|+|MF2|最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量y(百件)与销售单价x(元/件)之间的关系为:y=
-2x+140,(40≤x≤60)
-
1
2
x+50,(60<x≤80)

职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;
(2)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?并求出最大利润(利润=收入-支出)

查看答案和解析>>

同步练习册答案