精英家教网 > 高中数学 > 题目详情

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

(1);(2)存在,且的范围是

解析试题分析:(1)由于是多项式函数,故对最高次项系数分类,时它是一次函数,是增函数,不是减函数,当时,是二次函数,需要考虑对称轴和开口方向;(2)首先把方程化简,变为,设,即方程在区间内有且只有两个不相等的实数根,转化为讨论函数的单调性及极值问题,如本题中,通过分析导函数,知上是减函数,在上增函数,因此条件为解这个不等式组即得所求的取值范围.
试题解析:(1)当时,是单调增函数,不符合题意;
时,的对称轴方程为,由于上是单调增函数,不符合题意;
时,函数上是单调减函数,则,解得
综上,的取值范围是.  4分
(2)把方程整理为
即为方程,  5分
,原方程在区间内有且只有两个不相等的实数根,即为函数在区间内有且只有两个零点.  6分

,∵,解得(舍),
时,是减函数,
时,是增函数.  10分
内有且只有两个不相等的零点,只需  11分
 ∴
解得,所以的取值范围是
考点:(1)单调减函数的判定;(2)方程根的个数的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且(1)判断函数的奇偶性;(2)判断上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间上是增函数.
(1)求实数的值组成的集合
(2)设关于的方程的两个非零实根为.试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)若,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上最大值是5,最小值是2,若,在上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数.
(l)求的单调区间和极值;
(2)若对任意恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,证明:函数不是奇函数;
(2)设函数是奇函数,求的值;
(3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.

查看答案和解析>>

同步练习册答案