精英家教网 > 高中数学 > 题目详情
(2012•盐城一模)记等比数列{an}的前n项积为Tn(n∈N*),已知am-1am+1-2am=0,且T2m-1=128,则m=
4
4
分析:由am-1am+1-2am=0,结合等比数列的性质可得,am2-2am=0,从而可求am=2,而T2m-1=a1a2…a2m-1=(a1a2m-1)•(a2a2m-2)…am=am2m-1=22m-1,结合已知可求m
解答:解:∵am-1am+1-2am=0,
由等比数列的性质可得,am2-2am=0
∵am≠0
∴am=2
∵T2m-1=a1a2…a2m-1=(a1a2m-1)•(a2a2m-2)…am
=am2m-2am=am2m-1=22m-1=128
∴2m-1=7
∴m=4
故答案为4
点评:本题主要考查了等比数列的性质:若m+n=p+q,则am•an=apaq的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城一模)如图,在四棱锥P-ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.
(1)求证:PD∥面AEC;
(2)求证:平面AEC⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)函数f(x)=(x2+x+1)ex(x∈R)的单调减区间为
(-2,-1)(或闭区间)
(-2,-1)(或闭区间)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)若关于x的方程kx+1=lnx有解,则实数k的取值范围是
(-∞,
1
e2
]
(-∞,
1
e2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)已知x、y、z均为正数,求证:
3
3
(
1
x
+
1
y
+
1
z
)≤
1
x2
+
1
y2
+
1
z2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)在极坐标系中,圆C的方程为ρ=4
2
cos(θ-
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t+1
y=t-1
(t为参数),求直线l被⊙C截得的弦AB的长度.

查看答案和解析>>

同步练习册答案