精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产部门随机抽测生产某种零件的工人的日加工零件数(单位:件),其中A车间13人,B车间12人,获得数据如下:

根据上述数据得到样本的频率分布表如下:

分组

频数

频率

[2530]

3

0.12

3035]

5

0.20

3540]

8

0.32

4045]

n1

f1

4550]

n2

f2

1)确定样本频率分布表中n1n2f1f2的值;

2)现从日加工零件数落在(4045]的工人中随机选取两个人,求这两个人中至少有一个来自B车间的概率.

【答案】12

【解析】

1)根据茎叶图数据和频数分布表即可得到结果;(2)确定车间的人数,根据古典概型求得结果.

1)由茎叶图和样本频数分布表得:

2)日加工零件数落在的工人共有人,其中人在车间,人在车间

从日加工零件数落在的工人中随机选取两个人,基本事件总数

这两个人中至少有一个来自车间包含的基本事件个数

这两个人中至少有一个来自车间的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD的底面是边长为a的棱形,PD⊥底面ABCD.

1)证明:AC⊥平面PBD

2)若PD=AD,直线PB与平面ABCD所成的角为45°,四棱锥PABCD的体积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)是否存在实数,使得等式 对于一切正整数都成立?若存在,求出的值并给出证明;若不存在,请说明理由.

(2)求证:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对应的边分别为abc,已知b1c22cosAbcosC+ccosB)=a,则A__________;若M为边BC的中点,则|AM|__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为,则下列结论中不正确的是(  )

A. 若该大学某女生身高为170cm,则可断定其体重必为

B. 回归直线过样本点的中心

C. 若该大学某女生身高增加1cm,则其体重约增加

D. yx具有正的线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,有正弦定理:定值,这个定值就是的外接圆的直径如图2所示,中,已知,点M在直线EF上从左到右运动M不与EF重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么  

A. 先变小再变大

B. 仅当M为线段EF的中点时,取得最大值

C. 先变大再变小

D. 是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知是椭圆上的一点,从原点向圆作两条切线,分别交椭圆于点

(1)若点在第一象限,且直线互相垂直,求圆的方程;

(2)若直线的斜率存在,并记为,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6

(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;

(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为自然对数的底数).

(1)当时,求函数的单调递增区间;

(2)若函数在区间上单调递减,求的取值范围.

查看答案和解析>>

同步练习册答案