精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1 , AB,BB1 , B1C1的中点,则异面直线EF与GH所成的角等于

【答案】60°
【解析】解: 取A1B1 中点M连接MG,MH,则MG∥EF,MG与GH所成的角等于EF与GH所成的角.容易知道△MGH为正三角形,∠MGH=60°
∴EF与GH所成的角等于60°
所以答案是:60°
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=10,an+1﹣an=n(n∈N*),则 取最小值时n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的函数.

(1)当时,求函数在点处的切线方程;

(2)设,讨论函数的单调区间;

(3)若函数没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图△ABC中,AC=BC= AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.

(1)求证:GF∥平面ABC;
(2)求证:平面EBC⊥平面ACD;
(3)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其中为自然对数的底数, .

(1)判断函数的单调性,并说明理由;

(2)若,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是边长为a的正方形,PB⊥平面ABCD,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAB;
(2)若平面PDA与平面ABCD成60°的二面角,求该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项为Sn , 点(n, ),(n∈N*)均在函数y=3x﹣2的图象上.
(1)求数列{an}的通项公式.
(2)设bn= ,Tn为数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中,△AOB和△COD为两等腰直角三角形,A(﹣2,0),C(a,0),(a>0),设△AOB和△COD的
外接圆圆心分别为点M、N.
(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)的图象经过点 . (Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用单调性的定义证明.

查看答案和解析>>

同步练习册答案