【题目】已知椭圆:过点,左、右焦点分别是,,过的直线与椭圆交于,两点,且的周长为.
(1)求椭圆的方程;
(2)若点满足,求四边形面积的最大值.
【答案】(1)(2)4
【解析】
(1)本题首先可以根据椭圆定义以及的周长为得出,然后根据椭圆过点得出,最后联立方程,即可得出结果;
(2)本题首先可根据题意求出的坐标为并设出直线的方程为,然后联立直线方程与椭圆方程并计算出、,再然后根据得出四边形的面积为,最后通过化简并利用不等式即可得出四边形的面积的最大值。
(1)因为的周长为,所以,
因为椭圆:过点,所以,
联立方程,解得,,所以椭圆的方程为;
(2)由(1)可知,的坐标为,由题意可知,显然直线的斜率不为0,
设直线的方程为,,,
联立,得,
所以,,且恒成立,
因为点满足,所以四边形为平行四边形,设其面积为,
则,
因为,所以,,
,
令,则,
当且仅当,即时,有最大值4,
所以四边形面积的最大值为4。
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面,,,,.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线与平面所成的角为45°时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:
(1)求这1000件产品质量指标的样本平均数和样本方差 (同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.
(i)利用该正态分布,求;
(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出10件这种产品,记表示这件产品的利润,求.
附:,若,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
中国新能源汽车产销情况一览表 | ||||
新能源汽车产量 | 新能源汽车销量 | |||
产量(万辆) | 比上年同期增长() | 销量(万辆) | 比上年同期增长() | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
2019年2月份新能源汽车销量结构图
根据上述图表信息,下列结论错误的是( )
A.2018年4月份我国新能源汽车的销量高于产量
B.2017年3月份我国新能源汽车的产量不超过3.4万辆
C.2019年2月份我国插电式混合动力汽车的销量低于1万辆
D.2017年我国新能源汽车总销量超过70万辆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种规格的矩形瓷砖根据长期检测结果,各厂生产的每片瓷砖质量都服从正态分布,并把质量在之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为、,则“尺寸误差”为,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是,、,、,(正品瓷砖中没有“尺寸误差”大于的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.
(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为(元,求的分布列及数学期望.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量服从正态分布,则;,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)过点的直线椭圆于另一点,点在直线上,且.若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.
(1)求证:;
(2)若平面,求二面角的大小;
(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为减轻汽车尾气对大气的污染,保卫蓝天,鼓励广大市民使用电动交通工具出行,决定为电动车(含电动自行车和电动汽车)免费提供电池检测服务.现从全市已挂牌照的电动车中随机抽取100辆委托专业机构免费为它们进行电池性能检测,电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如图.
(1)采用分层抽样的方法从电池性能较好的电动车中随机抽取9辆,再从这9辆中随机抽取2辆,求至少有一辆为电动汽车的概率;
(2)为进一步提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:①电动自行车每辆补助300元;②电动汽车每辆补助500元;③对电池需要更换的电动车每辆额外补助400元.试求抽取的100辆电动车执行此方案的预算;并利用样本估计总体,试估计市政府执行此方案的预算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com