精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,错误的是(

A. 中,

B. 在锐角中,不等式恒成立

C. 中,若,则必是等腰直角三角形

D. 中,若,则必是等边三角形

【答案】C

【解析】

根据三角函数的性质,正弦定理,余弦定理,结合三角形的内角关系,依次判断即可.

A. 在△ABC中,由正弦定理可得 , ∴sinA>sinBa>bA>B,因此A>BsinA>sinB的充要条件,故A正确;

B.在锐角△ABC中,A,B ,且 ,则 ,所以

,B正确;

C.在△ABC中,由acosA=bcosB,利用正弦定理可得:sin2A=sin2B,得到2A=2B2A=2π-2B,故A=B ,即是等腰三角形或直角三角形,故C错误;

D. 在△ABC中,若B=60°,b2=ac,由余弦定理可得:b2=a2+c2-2accosB,∴ac=a2+c2-ac,即(a-c)2=0,解得a=c,又B=60°,∴△ABC必是等边三角形,故D正确;

故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 为真命题,则为真命题 B. 恒成立

C. 命题“”的否定是“ D. 命题“若”的逆否命题是“若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:y=x,l2:y=-x,动点P,Q分别在l1l2上移动,|PQ|=2,N是线段PQ的中点,记点N的轨迹为曲线C.

(Ⅰ)求曲线C的方程;

(Ⅱ)过点M(0,1)分别作直线MA,MB交曲线C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f (x)=lnx-x+1.

(1)f (x)的极值;

(2)0<a<1,证明函数g (x)=(x-a)exax2+a(a-1) x(x>lna)有极小值点x0,且g (x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,且时有,甲、乙、丙、丁四位同学有下列结论:

甲:

乙:函数上是增函数;

丙:函数关于直线对称;

丁:若,则关于的方程上所有根之和为.

其中正确的是(

A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定直线,定点,以坐标轴为对称轴的椭圆过点且与相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)椭圆的弦的中点分别为,若平行于,则斜率之和是否为定值? 若是定值请求出该定值若不是定值请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数定义域为,对于区间,如果存在,使得,则称区间为函数区间.

(Ⅰ)判断是否是函数区间;

(Ⅱ)若是函数(其中)的区间,求的取值范围;

(Ⅲ)设为正实数,若是函数区间,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A.ab是两条直线,且ab,那么a平行于经过b的任何平面

B.若直线a和平面α满足aα,那么aα内的任何直线平行

C.平行于同一条直线的两个平面平行

D.若直线ab和平面α满足abaαb不在平面α内,则bα

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案