精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线过点

1)求抛物线的方程,并求其焦点坐标与准线方程;

2)直线与抛物线交于不同的两点过点轴的垂线分别与直线交于两点,其中为坐标原点.为线段的中点,求证:直线恒过定点.

【答案】1)抛物线的方程为,其焦点坐标为,准线方程为2)证明见解析;

【解析】

(1)代入求得,即可的抛物线方程求得结果.

(2) 由题意知直线斜率存在且不为零,设直线方程为,与抛物线方程联立,设,根据已知由: :,及过点轴的垂线求得的坐标,根据为线段的中点,借助韦达定理化简即可证得结论.

解:(1)由抛物线过点

,所以抛物线的方程为

其焦点坐标为,准线方程为.

2)由题意知直线斜率存在且不为零,设直线方程为,直线与抛物线的交点为.

由韦达定理,得.

由已知得直线的方程为,所以

由已知得直线方程为,所以.

因为是线段的中点,所以①,

,代入①式,并化简得

代入②式,化简得

所以直线的方程为,故直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是圆O的直径,点C是圆O上异于AB的点,直线平面EF分别是的中点.

1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;

2)设,求二面角大小的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正六棱锥中,底面边长和侧棱分别是24分别是的中点,给出下面三个判断:(1所成的角的余弦值为;(2和底面所成的角是;(3)平面平面;其中判断正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为

1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;

2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平的逐步提高,人们对文娱活动的需求与日俱增,其中观看电视就是一种老少皆宜的娱乐活动.但是我们在观看电视娱乐身心的同时,也要注意把握好观看时间,近期研究显示,一项久坐的生活指标——看电视时间,是导致视力下降的重要因素,即看电视时间越长,视力下降的风险越大.研究者在某小区统计了每天看电视时间(单位:小时)与视力下降人数的相关数据如下:

编号

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

1)请根据上面的数据求关于的线性回归方程

2)我们用(1)问求出的线性回归方程估计回归方程,由于随机误差,所以的估计值,成为点()的残差.

①填写下面的残差表,并绘制残差图;

编号

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

②若残差图所在带状区域宽度不超过4,我们则认为该模型拟合精度比较高,回归方程的预报精度较高,试根据①绘制的残差图分折该模型拟合精度是否比较高?

附:回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某地区打算在一块矩形地块上修建一个牧场(ABCDEF围成的封闭区域)用来养殖牛和羊,其中AF=1AB=10BC=4CD=7(单位:百米),DEF是一段曲线形马路.该牧场的核心区为等腰直角三角形MPQ所示区域,该区域用来养殖羊,其余区域养殖牛,且MP=PQ,牧场大门位于马路DEF上的M处,一个观察点P位于AB的中点处,为了能够更好观察动物的生活情况,现决定修建一条观察通道,起点位于距离观察点P1百米的O点所示位置,终点位于Q.如图2所示,建立平面直角坐标系,若满足.

1)求的解析式;

2)求观察通道OQ长度的最小值.

查看答案和解析>>

同步练习册答案