精英家教网 > 高中数学 > 题目详情

如图,在棱长为2的正方体ABCD-中,M为AB的中点,E为的中点,(说明:原图没有线段BC1,EO,AC1,请你自己在使用时将图修改一下)

   (Ⅰ)求证:

   (Ⅱ)求点M到平面DBC的距离;

   (Ⅲ)求二面角M-B1C-D的大小。

解:(Ⅰ)连接,依题意可得的中点,连接,设于点

的中点,

在正方形中,

   (Ⅱ)

,又

  ,∴为所求距离.

又正方体的棱长为

因此,点到平面的距离为

   (也可由体积相等,求得距离为

  (Ⅲ)连接,则,而,∴

    由(Ⅱ)知,∴在平面内的射影,

由三垂线定理知

所以为二面角的平面角.

中,

所以,二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市慈溪市高三(上)期中数学试卷(文科)(解析版) 题型:选择题

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

同步练习册答案