【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线经过点,倾斜角为.在以原点为极点, 轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)设直线与曲线相交于两点,求的值.
科目:高中数学 来源: 题型:
【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ].
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的最大值及单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为( )
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.
(Ⅰ)求证:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一点G,使GF⊥平面EDF?若存在,指出点G的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为(为参数).
(1)写出点的直角坐标及曲线的直角坐标方程;
(2)若为曲线上的动点,求的中点到直线: 的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com