精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是(  )
A、4+2
3
B、
3
+1
C、
3
-1
D、
3
+1
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:首先根据题意建立关系式利用正三角形的边的关系,和双曲线的定义关系式求的离心率.
解答: 解:已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,
则:设|F1F2|=2c
进一步解得:|MF1|=c,|MF2|=
3
c

利用双曲线的定义关系式:|MF2|-|MF1|=2a
两边平方解得:
c2
a2
=(
2
3
-1
)2

c
a
=
3
+1

故选:B
点评:本题考查的知识要点:双曲线的定义关系式,正三角形的边的关系,双曲线的离心率,及相关运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1
2
lnx-
1
2e2
x(e为自然对数的底),g(x)=x-
a
x
(a>0).若对任意x1,x2∈[2,2e2]都有g(x1)≥f(x2),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
16
=1,离心率为
3
5

(Ⅰ)求椭圆的方程;
(Ⅱ)过a>4的椭圆的右焦点F任作一条斜率为k(k≠0)的直线交椭圆于A,B两点,问在F右侧是否存在一点D(m,0),连AD、BD分别交直线x=
25
3
于M,N两点,且以MN为直径的圆恰好过F,若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性;
(3)求f(x)在区间[-3,3]上的值域;
(4)若任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数f(x)在区间(m,m+
1
3
)(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)设g(x)=
1+x
a(1-x)
[xf(x)-1],若对任意x∈(0,1)恒有g(x)<-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

6名学生排成一列,则学生甲、乙在学生丙不同侧的排位方法种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x3+ax2+3x+1在定义域R内为单调递增函数,则实数a的取值范围为(  )
A、[-1,1]
B、[-3,3]
C、[-
3
3
]
D、[-
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)为单调函数,且对任意x∈R,恒有f(f(x)-2x)=-
1
2
,则函数f(x)的零点是(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线ax2+by2=12的两条动弦MA,MB所在直线的斜率分别为k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),试证明:k1k2为定值.
(2)已知a=3,b=4.
(i)若A(-2,0),B(2,0),试判断k1k2是否为定值?若是,求出定值;若不是,请说明理由.
(ii)若定点M(1,-
3
2
)且k1k2=
3
4
,试判断直线AB是否过一定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案