精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)过点.

1)求椭圆的方程;

2)设过椭圆的右焦点,且倾斜角为的直线和椭圆交于两点,对于椭圆上任一点,若,求的最大值.

【答案】12

【解析】

1)把已知点的坐标代入椭圆方程,得到关于的方程组,求解可得的值,则椭圆的方程可求;

2)由(1)知,,由题意可知的方程,与椭圆方程联立,化为关于的一元二次方程,由在椭圆上及根与系数的关系可得,再由基本不等式求最值.

解:(1)∵椭圆过点,∴.

,∴椭圆的方程为.

2)由(1)知,由题意可知的方程为,①

椭圆的方程可化为,②

将①代入②消去,得,③

,则有

,由

又点在椭圆上,

,④

在椭圆上,故有,⑤

,⑥

将⑤⑥代入④可得

,当且仅当时取“=”,则的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为平面直角坐标系xOy中的点集,从中的任意一点Px轴、y轴的垂线,垂足分别为M,N,记点M的横坐标的最大值与最小值之差为x(),点N的纵坐标的最大值与最小值之差为y().若是边长为1的正方形,给出下列三个结论:

x(Q)的最大值为

x(Q)+y(Q)的取值范围是

x(Q)-y(Q)恒等于0.

其中所有正确结论的序号是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为Ql上的动点,以OQ为边作等边三角形OPQ,且三点OPQ按逆时针方向排列.

(Ⅰ)设点P运动轨迹E的直角坐标方程;

(Ⅱ)若曲线经过伸缩变换得到曲线,若点M为曲线上的动点,且点M到曲线E的最小距离为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义.

集合中的元素个数记为,当,称集合具有性质.

1)已知集合,写出的值,并判断集合是否具有性质

2)设集合具有性质,判断集合中的三个元素是否能组成等差数列,请说明理由;

3)若数列是以为首项,2为公比的等比数列. 数列中的前100项:组成的集合记作,将集合中的所有元素从小到大排序,即满足,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着夏季的到来,冰枕成为市面上的一种热销产品,某厂家为了调查冰枕在当地大学的销售情况,作出调研,并将所得数据统计如下表所示:

表一:

温度在30℃以下

温度在30℃以上

总计

女生

10

30

40

男生

40

20

60

总计

50

50

100

随后在该大学一个小卖部调查了冰枕的出售情况,并将某月的日销售件数(x)与销售天数(y)统计如下表所示:

表二:

2

4

6

8

10

(件)

3

6

7

10

12

1)请根据表二中的数据在下列网格纸中绘制散点图;

2)请根据表二中提供的数据,用最小二乘法求出y关于x的线性回归方程

3)从(1)(2)中的数据及回归方程我们可以得到,销售件数随着销售天数的增长而增长,但无法判断男、女生对冰枕的选择是否与温度有关,请结合表一中的数据,并自己设计方案来判段是否有99.9%的可能性说明购买冰枕的性别与温度相关.

参考数据及公式:

P(K2k0)

0.100

0.050

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, ,点上的动点.现将矩形沿着对角线折成二面角,使得

)求证:当时,

)试求的长,使得二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线处的切线方程;

2)当时,求函数的最小值;

3)已知,且任意,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

同步练习册答案