精英家教网 > 高中数学 > 题目详情

已知定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(2a)<0,则a的取值范围


  1. A.
    (-∞,-1)
  2. B.
    (-1,+∞)
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:根据函数的奇偶性、单调性去掉不等式中的符号“f”,转化为具体不等式即可解得,注意函数的定义域.
解答:因为f(x)为奇函数,所以f(1-a)+f(2a)<0可化为f(2a)<-f(1-a)=f(a-1),
又f(x)为(-1,1)上的减函数,所以有,解得0<a<
所以a的取值范围为(0,).
故选D.
点评:本题考查函数的奇偶性、单调性的综合应用,考查抽象不等式的求解,解决本题的关键是综合运用函数性质把抽象不等式化为具体不等式.
练习册系列答案
相关习题

科目:高中数学 来源:蚌埠二中2008届高三12月份月考数学试题(理) 题型:044

已知定义在实数集合R上的奇函数f(x)有最小正周期为2,且当x∈(0,1)时,

(1)求函f(x)在[-1,1]上的解析式;

(2)判断f(x)在(0,1)上的单调性;

(3)当λ取何值时,方程f(x)=λ在[-1,1]上有实数解?

查看答案和解析>>

科目:高中数学 来源:山东省济南市2012届高三上学期12月月考数学试题 题型:044

已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=

(Ⅰ)求函数f(x)在(-1,1)上的解析式;

(Ⅱ)判断f(x)在(0,1)上的单调性;

(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案