【题目】如图,设椭圆:的左、右焦点分别为,,上顶点为,过点作与垂直的直线交轴负半轴于点,且.
(1)若过,,三点的圆恰好与直线:相切,求椭圆的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆交于,两点,在轴上是否存在点使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入世纪以来,该产品的产量平稳增长.记年为第年,且前年中,第年与年产量万件之间的关系如下表所示:
若近似符合以下三种函数模型之一:,,.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,年的年产量比预计减少,试根据所建立的函数模型,确定年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机小时 | 平均每天使用手机小时 | 合计 | |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合计 | 18 | 17 | 35 |
(I)在参与调查的平均每天使用手机不超过3小时的7名女生中,有4人使用国产手机,从这7名女生中任意选取2人,求至少有1人使用国产手机的概率;
(II) 根据列联表,是否有90%的把握认为学生使用手机的时间长短与性别有关(的观测值精确到0.01).
附:
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)写出直线BC的一个方向向量;
(2)设平面α经过点A,且BC是α的法向量,M(x,y,z)是平面α内的任意一点,试写出x,y,z满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在给出的下列命题中,正确的是( )
A.设是同一平面上的四个点,若,则点必共线
B.若向量是平面上的两个向量,则平面上的任一向量都可以表示为,且表示方法是唯一的
C.已知平面向量满足则为等腰三角形
D.已知平面向量满足,且,则是等边三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若将频率视为概率,现从全市高二学生中随机查看5名学生的期中考试语文成绩,记成绩优秀(不低于80分)的学生人数为,求的分布列和数学期望。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com