【题目】已知函数f(x)= sin(ωx+φ)(ω>0,﹣ <φ< ),A( ,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是( )
A.(2k﹣ ,2k+ ),k∈Z
B.(2kπ﹣ π,2kπ+ π),k∈Z
C.(4k﹣ ,4k+ ),k∈Z
D.(4kπ﹣ π,4kπ+ π),k∈Z
科目:高中数学 来源: 题型:
【题目】已知点P(x,y)是曲线C上任意一点,点(x,2y)在圆x2+y2=8上,定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求证直线MA、MB与x轴始终围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程是 (α为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=1.
(Ⅰ)分别写出C1的极坐标方程和C2的直角坐标方程;
(Ⅱ)若射线l的极坐标方程θ= (ρ≥0),且l分别交曲线C1、C2于A、B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F 是棱 PA上的一个动点,E为PD的中点.
(Ⅰ)若 AF=1,求证:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 与平面 PCD所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知ω为正整数,函数f(x)=sinωxcosωx+ 在区间 内单调递增,则函数f(x)( )
A.最小值为 ,其图象关于点 对称
B.最大值为 ,其图象关于直线 对称
C.最小正周期为2π,其图象关于点 对称
D.最小正周期为π,其图象关于直线 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣ax,g(x)= x2﹣lnx﹣ .
(1)若f(x)和g(x)在同一点处有相同的极值,求实数a的值;
(2)对于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求实数a的取值范围;
(3)设G(x)= x2﹣ ﹣g(x),求证:G(x)> ﹣ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com