精英家教网 > 高中数学 > 题目详情

【题目】将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,按系统抽样的方法从中抽取一个容量为50的样本,如果在第一组抽得的编号是0015,则在第21组抽得的编号是

【答案】0415
【解析】解:∵系统抽样是先将总体按样本容量分成k= 段,再间隔k取一个.
又∵现在总体的个体数为1000,样本容量为50,∴k=20,
∴若第一个号码为0015,则第21个号码为0015+20×20=0415.
所以答案是:0415.
【考点精析】关于本题考查的系统抽样方法,需要了解把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本;第一个样本采用简单随机抽样的办法抽取才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和Sn , 且满足2Sn=an2+an
(1)求数列{an}的通项公式;
(2)若数列bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图.

(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC;
(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:

观众年龄

支持A

支持B

支持C

20岁以下

200

400

800

20岁以上(含20岁)

100

100

400

(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos(ωx+φ)(ω>0,|φ|< )的图象上的每一点的纵坐标不变,横坐标缩短为原来的一半,再将图象向右平移 个单位长度得到函数y=sinx的图象.
(1)直接写出f(x)的表达式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β为锐角, =cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.

(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的众数,中位数,平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, 为棱的中点.

(Ⅰ)探究直线与平面的位置关系,并说明理由;

(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案