精英家教网 > 高中数学 > 题目详情

【题目】高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:

喜欢中国古典文学

不喜欢中国古典文学

合计

女生

5

男生

10

合计

50

已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为喜欢中国古典文学与性别有关?请说明理由;

(3)已知在喜欢中国古典文学的10位男生中,还喜欢数学,还喜欢绘画,还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求不全被选中的概率.

参考公式及数据:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)见解析;(2)见解析;(3)

【解析】【试题分析】(1)依据题设条件,直接运用联列表分析求解;(2)借助题设条件,运用列联表的数据关系进行分析推断;(3)运用列举法及古典概型的计算公式分析求解:

(1)因为从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为,所以全班喜欢中国古典文学的学生为人,列联表补充如下:

喜欢中国古典文学

不喜欢中国古典文学

合计

女生

20

5

25

男生

10

15

25

合计

30

20

50

(2)由列联表数据,得

因为,所以有的把握认为喜欢中国古典文学与性别有关.

(3)从喜欢数学、绘画和体育的男生中各选取1名,总的基本事件有共12个,其中全被选中所包含的基本事件有共3个,则不全被选中所包含的基本事件有9个.

于是不全被选中的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(3)在(2)中抽取的人中,随机抽取人,求分数在人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为。在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点P坐标为,圆与直线交于两点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知某曲线C的极坐标方程为,直线的极坐标方程为

1)求该曲线C的直角坐标系方程及离心率

2)已知点为曲线C上的动点,求点到直线的距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,点分别为边的中点,点是线段上的动点.

(1)求证:

(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:

算得,K2≈7.8.见附表:参照附表,得到的正确结论是(  )

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

C. 有99%以上的把握认为“爱好该项运动与性别有关”

D. 有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,右顶点为,上顶点为,过三点的圆的圆心坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线为常数, )与椭圆交于不同的两点

(ⅰ)当直线,且时,求直线的方程;

(ⅱ)当坐标原点到直线的距离为,且面积为时,求直线的倾斜角.

查看答案和解析>>

同步练习册答案