精英家教网 > 高中数学 > 题目详情
9.已知抛物线y2=2px的准线经过点(-1,1),
(Ⅰ)求抛物线的方程;
(Ⅱ)已知过抛物线焦点的直线交抛物线于A,B两点,且|AB|长为5,求直线AB的方程.

分析 (Ⅰ)根据题意可知抛物线y2=2px的准线方程为x=-1,求出p,即可求抛物线的方程;
(Ⅱ)分类讨论,直线与抛物线方程联立,由抛物线的定义可知,|AB|=x1+x2+p=5,即可求直线AB的方程.

解答 解:(Ⅰ)根据题意可知抛物线y2=2px的准线方程为x=-1,
则$-\frac{p}{2}=-1$,p=2,…(2分)
∴抛物线的方程为y2=4x; …(4分)
(Ⅱ)当过焦点的直线斜率不存在时,|AB|=4,不合题意; …(5分)
故可设直线AB方程为y=k(x-1)(k≠0),$A(\begin{array}{l}{{x_1},{y_1}}\end{array}),B(\begin{array}{l}{{x_2},{y_2}}\end{array})$,…(6分)
由$\left\{\begin{array}{l}{y^2}=4x\\ y=k(x-1)\end{array}\right.$得:k2x2-(2k2+4)x+k2=0,…(7分)
则${x_1}+{x_2}=\frac{{2{k^2}+4}}{k^2}$,…(8分)
由抛物线的定义可知,|AB|=x1+x2+p,∴$5=\frac{{2{k^2}+4}}{k^2}+2$,…(10分)
解得k=±2,∴所求直线方程为2x-y-2=0或2x+y-2=0.…(12分)

点评 本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=$\frac{π}{3}$,AD=2,DE=$\sqrt{3}$.
(Ⅰ)异面直线AE与DC所成的角余弦值;
(Ⅱ)求证平面AEF⊥平面CEF;
(Ⅲ)在线段AB取一点N,当二面角N-EF-C的大小为60°时,求|AN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=(  )
A.2或3B.-2或3C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x02+x0-1<0”的否定是(  )
A.?x∈R,x2+x-1≥0B.?x∈R,x2+x-1<0
C.?x0∈R,x02+x0-1≥0D.?x0∈R,x02+x0-1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有下列四个命题,
①若点P在椭圆$\frac{x^2}{9}+\frac{y^2}{5}$=1上,左焦点为F,则|PF|长的取值范围为[1,5];
②方程x=$\sqrt{{y^2}+1}$表示双曲线的一部分;
③过点(0,2)的直线l与抛物线y2=4x有且只有一个公共点,则这样的直线l共有3条;
④函数f(x)=x3-2x2+1在(-1,2)上有最小值,也有最大值.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinα=$\frac{4}{5}$,且tanα<0,则cos(π+α)=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+4a,x<1}\\{1+lo{g}_{a}x,x≥1}\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,D是AB的中点.
(1)求证:BC1∥平面A1CD;
(2)若AA1=AC=CB=5,AB=6,求三棱锥D-AA1C的体积.

查看答案和解析>>

同步练习册答案