精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )
A、y=±
2
2
x
B、y=±
2
x
C、y=±
1
2
x
D、y=±2x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意可得b,c,由双曲线的a,b,c的关系可得a,再由双曲线的渐近线方程,即可得到.
解答: 解:由题意可得,双曲线的b=1,c=
3

则a=
c2-b2
=
2

则双曲线的渐近线方程为y=±
b
a
x,
即为y=±
2
2
x.
故选A.
点评:本题考查双曲线的方程和性质,考查渐近线方程的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(π-x)+cosx.
(Ⅰ)求函数f(x)的最小正周期和对称轴方程;
(Ⅱ)若函数f(x)的图象过点(α,
4
2
5
),其中-
4
<α<
π
4
,求f(α-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
x+1
与函数y=g(x)的图象关于直线x=2对称,
(1)求g(x)的表达式;
(2)若Φ(x+2)=
1
Φ(x)
,当x∈(-2,0)时,Φ(x)=g(x),求Φ(2005)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
12
=1
与椭圆C共焦点,它们的离心率之差为
6
5
,则椭圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y∈[0,e](e为自然对数的底数),则满足xy≥e的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,1]上的两个函数f(x)和g(x),其中f(x)=x2-ax+2(a≥0),g(x)=-
1
x+1
+1.
(1)求函数f(x)的最小值m(a);
(2)若对任意x1,x2∈[0,1],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-
3
y+2=0被圆x2+y2=4截得的劣弧长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P为双曲线
x2
a2
-
y2
b2
=1(a、b为正常数)上任一点,过P点作直线分别与双曲线的两渐近线相交于A、B两点,若
PA
=-2
.
PB

(Ⅰ)求证:A、B两点的横坐标之积为常数;
(Ⅱ)求△AOB的面积(其中O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,则f(
1
3
)的值为(  )
A、-
3
4
B、-
1
4
C、
1
4
D、
3
4

查看答案和解析>>

同步练习册答案