精英家教网 > 高中数学 > 题目详情
6.已知$|{\vec a}|=1$,$|{\vec b}|=2$,$\vec a(\vec a-\vec b)=3$则$\vec a$与$\vec b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

分析 根据平面向量数量积的定义,即可求出$\vec a$与$\vec b$的夹角大小.

解答 解:设$\vec a$与$\vec b$的夹角为θ,$|{\vec a}|=1$,$|{\vec b}|=2$,
∵$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=12-1×2×cosθ=3,
∴cosθ=1;
又θ∈[0,π],
∴$\vec a$与$\vec b$的夹角为π.
故选:D.

点评 本题考查了平面向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知a=cos17°cos23°-sin17°sin23°,b=2cos225°-1,c=$\frac{{\sqrt{3}}}{2}$,则a,b,c的大小关系(  )
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知随机变量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,则n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求a及这部分学生成绩的样本平均数$\overline x$(同一组数据用该组的中点值作为代表);
(2)若该校高二共有1000名学生,试估计这次测验中,成绩在105分以上的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求椭圆C的方程;
(2)已知⊙A1:(x+2)2+y2=12和点A2(2,0),求过点A2且与⊙A1相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对?x∈R,mx2+mx+1>0恒成立,则m的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=cos(2x+φ)的图象向右平移$\frac{π}{3}$个单位,得到的函数为奇函数,则|φ|的最小值(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点A(-2,0)、B(2,0),P是平面内的一个动点,直线PA与PB的斜率之积是-$\frac{1}{2}$.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线y=k(x-1)与曲线C交于不同的两点M、N,当△AMN的面积为$\frac{12\sqrt{2}}{5}$时,求k的值.

查看答案和解析>>

同步练习册答案