精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,短轴长为,点在椭圆上.

(1)求椭圆的标准方程;

(2)若斜率为的直线与椭圆交于 两点, 为弦中点,求点的轨迹方程.

【答案】(1);(2).

【解析】试题分析:(1)由椭圆的短轴长可求出的值,将点代入到椭圆方程可得的值,进而可得椭圆的标准方程;(2)设弦所在直线的方程为,A点坐标为,B点坐标为,弦的中点坐标为,联立直线与椭圆的方程,运用韦达定理和中点坐标公式得,代入直线得,故而得到满足的关系式,结合点在椭圆内得到的范围,从而得最后结果.

试题解析:(1)依题意, ,则设椭圆方程为

因为椭圆过,所以,即

所以椭圆方程为

(2)依题意,设斜率为的弦所在直线的方程为,A点坐标为,B点坐标为,弦的中点坐标为消去,即 两式消掉又弦的中点在椭圆内部,所以故平行弦中点轨迹方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条线段,称为该直径的共轭直径,已知椭圆的方程为.

1)若一条直径的斜率为,求该直径的共轭直径所在的直线方程;

2)若椭圆的两条共轭直径为,它们的斜率分别为,证明:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C经过点A(1,3) ,B(4,2),且圆心在直线lxy-1=0上.

(1)求圆C的方程;

(2)设P是圆Dx2y2+8x-2y+16=0上任意一点,过点P作圆C的两条切线PMPNMN为切点,试求四边形PMCN面积S的最小值及对应的点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数).

1)当时,求函数的单调性;

2)当时,求证:

3)试讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600.

1设一次订购件,服装的实际出厂单价为元,写出函数的表达式;

2当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,经过点的直线与椭圆相交于两点,已知的周长为

(1)求椭圆的方程;

(2)若,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中, 所对的边分别为,且.

(1)求角的大小;

(2)若 的中点,求的长.

【答案】(1);(2).

【解析】试题分析:(1)由已知,利用正弦定理可得a2b2c22b再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
2ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,ABD中,由余弦定理求得BD的值.

试题解析:

(1)因为asin A(bc)sin B(cb)·sin C

由正弦定理得a2(bc)b(cb)c

整理得a2b2c22bc

由余弦定理得cos A

因为A∈(0π)所以A.

(2)cos Bsin B

所以cos Ccos[π(AB)]=-cos(AB)=-=-

由正弦定理得b2

所以CDAC1

BCD由余弦定理得BD2()2122×1××13

所以BD.

型】解答
束】
21

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案