精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求处的切线方程;

2)设函数

)若函数有且仅有一个零点时,求的值;

)在()的条件下,若,求的取值范围。

【答案】12)(

【解析】试题分析: (1)对函数求导,求出,即可求出切线方程;

2)()分离参数得,由函数的单调性可知,,可求得;)研究函数的单调性,求出函数在区间上的最大值即可.

试题解析:(1)当时,定义域

,又

处的切线方程4

2)()令

上是减函数

所以当时,,当时,

所以上单调递增,在上单调递减,

所以当函数有且今有一个零点时,9

)当,若只需证明

函数上单调递增,在上单调递减,在上单调递增

13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床位每天的租金)不超过10元时,床位可以全部租出;当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入):
(1)把y表示成x的函数;
(2)试确定,该宾馆将床价定为多少元时,既符合上面的两个条件,又能使净收入高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班学生进行了三次数学测试,第一次有8名学生得满分,第二次有10名学生得满分,第三次有12名学生得满分,已知前两次均为满分的学生有5名,三次测试中至少有一次得满分的学生有15名,若后两次均为满分的学生至少有名,则的值为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的偶函数,对于xR,都有f(x+4)=f(x)+f(2)成立,当x1,x2[0,2]且x1≠x2时,都有 给出下列四个命题:

①f(﹣2)=0;

直线x=﹣4是函数y=f(x)的图象的一条对称轴;

函数y=f(x)在[4,6]上为减函数;

函数y=f(x)在(﹣8,6]上有四个零点.

其中所有正确命题的序号为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+a(x﹣1)2,其中a>0.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性;

(3)若函数f(x)有两个极值点x1,x2,且x1<x2,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC内接于☉O,AB=AC,直线MN切☉O于点C,弦BD∥MN,AC与BD相交于点E.

(1)求证:△ABE≌△ACD;
(2)求证:BE=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴长为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;

(2)写出函数f(x)的解析式和值域.

查看答案和解析>>

同步练习册答案