精英家教网 > 高中数学 > 题目详情
18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e的取值范围是(  )
A.$({1,\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{5}}}{2},+∞})$C.$({1,\frac{5}{4}})$D.$({\frac{5}{4},+∞})$

分析 由于双曲线的一条渐近线方程为:y=$\frac{b}{a}$x,及点(2,1)在“右”区域内,得出 $\frac{b}{a}$>$\frac{1}{2}$,从而得出双曲线离心率e的取值范围.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为:y=$\frac{b}{a}$x,
∵点(2,1)在“右”区域内,
∴$\frac{b}{a}$×2>1,即$\frac{b}{a}$$>\frac{1}{2}$,
∴e=$\frac{c}{a}$=$\sqrt{1+(\frac{b}{a})^{2}}$>$\frac{\sqrt{5}}{2}$,
又e>1,
则双曲线离心率e的取值范围是($\frac{\sqrt{5}}{2}$,+∞).
故选:B.

点评 本小题主要考查双曲线的简单性质、不等式(组)与平面区域、不等式的性质等基础知识,考查运算求解能力与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.复数z满足z(1+i)=2i(i为虚数单位),则z的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α,若|BC|=1,则$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数 f (x)=x2ln x,若关于x的不等式 f (x)-kx+1≥0恒成立,则实数k 的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数(i-1-i)3的虚部为(  )
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中真命题的个数是(  )
①“a>b”是“a2>b2”的充要条件;
②“a>b”是“a3>b3”的充要条件;
③“a>b”是“|a|>|b|”的充分条件;
④“a>b”是“ac2≤bc2”的必要条件.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+x-lnx在x=a处的切线与直线2x+2y-1=0垂直,则a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[-3,3]中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”发生的概率为(  )
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若等比数列{an}的前n项和Sn=a+($\frac{1}{2}$)n-2,则a=-4.

查看答案和解析>>

同步练习册答案