精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
根据DE是△ABC的中位线,那么可知DE∥AB,同理可知DH∥AG,那么FH∥SG,结合线面平行的判定定理得到证明。

试题分析:SG∥平面DEF,证明如下:
方法一 连接CG交DE于点H,
如图所示.

∵DE是△ABC的中位线,
∴DE∥AB.
在△ACG中,D是AC的中点,
且DH∥AG.
∴H为CG的中点.
∴FH是△SCG的中位线,
∴FH∥SG.
又SG平面DEF,FH平面DEF,
∴SG∥平面DEF.
点评:解决线面位置关系,要考虑线面平行和垂直的两个特殊情况, 结合已知的判定定理和性质定理来分析,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,矩形所在平面与平面垂直,,且上的动点.

(Ⅰ)当的中点时,求证:
(Ⅱ)若,在线段上是否存在点E,使得二面角的大小为. 若存在,确定点E的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直三棱柱中,,若中点.
(Ⅰ)求证:∥平面
(Ⅱ)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若,且,则
B.若,且,则
C.若,且,则
D.若,且,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EFEFAB,,HBC的中点.求证:FH∥平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.

(1)求证:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大小;
(3)求点E到平面O1BC的距离.

查看答案和解析>>

同步练习册答案