精英家教网 > 高中数学 > 题目详情
在平面直角坐标系x0y中,抛物线y2=2x的焦点为F,若M是抛物线上的动点,则
|MO||MF|
的最大值为
 
分析:设M 到准线x=-
1
2
 的距离等于d,由抛物线的定义可得
|MO|
|MF|
=
|MO|
d
,化简为
1+
m-
1
4
m2+m+
1
4
,令m-
1
4
=t,则m=t+
1
4
|MO|
|MF|
=
1+
1
t+
3
2
+
9
16t
,利用基本不等式求得最大值.
解答:解:焦点F(
1
2
,0),设M(m,n),则n2=2m,m>0,设M 到准线x=-
1
2
 的距离等于d,
|MO|
|MF|
=
|MO|
d
=
m2+n2
m+
1
2
=
m2+2m
m+
1
2
=
m2+2m
m2+m+
1
4
=
m2+2m
m2+m+
1
4

=
m2+m+m+
1
4
-
1
4
m2+m+
1
4
=
1+
m-
1
4
m2+m+
1
4
.令 m-
1
4
=t,t>-
1
4
,则 m=t+
1
4

|MO|
|MF|
=
1+
t
t2+
3
2
t+
9
16
=
1+
1
t+
3
2
+
9
16t
1+
1
3
=
2
3
3
(当且仅当 t=
3
4
 时,等号成立).
|MO|
|MF|
的最大值为
2
3
3

故答案为
2
3
3
点评:本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,把
|MO|
|MF|
化为
1+
m-
1
4
m2+m+
1
4
,是解题的关键和难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设直线y=
3
x+2m
和圆x2+y2=n2相切,其中m,n∈N,0<|m-n|≤1,若函数f(x)=mx+1-n的零点x0∈(k,k+1)k∈Z,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在平面直角坐标系xOy中,椭圆x2+
y2
4
=1在第一象限的部分为曲线C,曲线C在其上动点P(x0,y0)处的切线l与x轴和y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

(1)求切线l的方程(用x0表示);
(2)求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中.椭圆C:
x2
2
+y2=1
的右焦点为F,右准线为l.
(1)求到点F和直线l的距离相等的点G的轨迹方程.
(2)过点F作直线交椭圆C于点A,B,又直线OA交l于点T,若
OT
=2
OA
,求线段AB的长;
(3)已知点M的坐标为(x0,y0),x0≠0,直线OM交直线
x0x
2
+y0y=1
于点N,且和椭圆C的一个交点为点P,是否存在实数λ,使得
OP
2
OM
ON
,若存在,求出实数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy(O为坐标原点)中,椭圆E1
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点在圆E2:x2+y2=a+b上,且椭圆的离心率是
3
2

(Ⅰ)求椭圆E1和圆E2的方程;
(Ⅱ)是否存在经过圆E2上的一点P(x0,y0)的直线l,使l与圆E2相切,与椭圆E1有两个不同的交点A、B,且
OA
OB
=3?若存在,求出点P的横坐标x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点A(
a
2
a
2
),B(
3
,1)

(1)求椭圆C的方程;
(2)已知点P(x0,y0)在椭圆C上,F为椭圆的左焦点,直线l的方程为x0x+3y0y-6=0.
①求证:直线l与椭圆C有唯一的公共点;
②若点F关于直线l的对称点为Q,求证:当点P在椭圆C上运动时,直线PQ恒过定点,并求出此定点的坐标.

查看答案和解析>>

同步练习册答案