精英家教网 > 高中数学 > 题目详情
14.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.4$\sqrt{3}$

分析 作出直观图,根据球和等边三角形的性质计算△SAB的面积和棱锥的最大高度,代入体积公式计算.

解答 解:取AB中点D,连结SD,设球O半径为r,则4πr2=20π,
解得r=$\sqrt{5}$,△ABC是边长为2$\sqrt{3}$的等边三角形,AB=2,CD=3.AD=$\sqrt{3}$,
过S作ABC的垂线,垂足是AB的中点时,
所求三棱锥的体积最大,此时△SAB与△ABC全等,SD=3,三棱锥S-ABC体积V=$\frac{1}{3}$S△SAB•CD=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×3×3=3\sqrt{3}$..
故选:B.

点评 本题考查了棱锥的体积计算,空间几何体的作图能力,准确画出直观图找到棱锥的最大高度是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,Rt△ABC的顶点A坐标(-2,0),直角顶点B(0,-2$\sqrt{2}$),顶点C在x轴上,点P为线段OA的中点.
(1)求BC所在直线的方程.
(2)M为Rt△ABC外接圆的圆心,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x4-8x3+18x2-1,x∈[-1,4]
(1)求f(x)的单调区间;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.a,b,c是△ABC中角A,B,C的对边,则直线sinAx+ay+c=0与sinBx+by=0的位置关系是(  )
A.相交B.重合C.垂直D.平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义min{a,b}=$\left\{\begin{array}{l}{a,(a≤b)}\\{b,(a>b)}\end{array}\right.$,若函数f(x)=min{sin(2x+$\frac{π}{6}$),cos2x},且f(x)在区间[s,t]上的值域为[-1,$\frac{1}{2}$],则区间[s.t]长度的最大值为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:关于x的方程x2-ax+1=0有实根;命题q:对任意x∈[-1,1],不等式a2-3a-x+1≤0恒成立,若“p∧q”是假命题,“?q”也是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2cosx的定义域为$[\frac{π}{3},π]$,值域为[a,b],
(Ⅰ)求a,b的值;
(Ⅱ)求函数y=asinx+b的最值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(x-$\frac{2}{\sqrt{x}}$)7的二项展开式中,x4的系数为84(用数字作答)

查看答案和解析>>

同步练习册答案