精英家教网 > 高中数学 > 题目详情

【题目】有下列说法:

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;

②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;

③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.

④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】对于①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确

对于②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,正确

对于③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确

对于④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化,错误,应该是气温解释了85%的热茶销售杯数变化

故选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若且函数的值域为,的表达式;

(2)在(1)的条件下, , 是单调函数, 求实数k的取值范围;

(3)设, 为偶函数, 判断能否大于零?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)问题发现

如下图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE。

填空:∠AEB的度数为____________

线段AD、BE之间的数量关系是_________

(2)拓展探究

如下图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

(3)解决问题

如下图,在正方形ABCD中,CD=。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为 的中点.将沿折起到的位置,使,如图2,连结

(Ⅰ)求证:平面 平面

(Ⅱ)若中点,求直线与平面所成角的正弦值;

(Ⅲ)线段上是否存在一点,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为菱形, 底面为直线上一动点.

Ⅰ)求证:

Ⅱ)若 分别为线段 的中点,求证: 平面

Ⅲ)直线上是否存在点,使得平面平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).记Sn=a1+a2+…+an . Tn= + +…+ .求证:当n∈N*
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,则异面直线EF与BC所成角大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某高中甲、乙两个班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.

(1)甲班和乙班同学身高的中位数各是多少?并计算甲班样本的方差.

(2)现从乙班这10名同学中随机抽取2名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.

查看答案和解析>>

同步练习册答案