精英家教网 > 高中数学 > 题目详情
1.等差数列{an}的前n项和为Sn,且$\frac{{S}_{6}}{{S}_{3}}$=4,则$\frac{{S}_{5}}{{S}_{6}}$=(  )
A.$\frac{9}{4}$B.$\frac{2}{3}$C.$\frac{25}{36}$D.4

分析 利用等差数列的通项公式与求和公式即可得出.

解答 解:∵数列{an}为等差数列,且$\frac{{S}_{6}}{{S}_{3}}$=4,
∴6a1+$\frac{6×5}{2}$d=4$(3{a}_{1}+\frac{3×2}{2}d)$,化为:d=2a1
则$\frac{{S}_{5}}{{S}_{6}}$=$\frac{5{a}_{1}+\frac{5×4}{2}d}{6{a}_{1}+\frac{6×5}{2}d}$=$\frac{5({a}_{1}+2d)}{3(2{a}_{1}+5d)}$=$\frac{5×5{a}_{1}}{3×12{a}_{1}}$=$\frac{25}{36}$.
故选:C.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=ln(2sinx-1)的定义域为{x|$\frac{π}{6}$+2kπ<x<$\frac{5π}{6}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,等腰△ABC中,AB=BC=5,AC=6,点E,F分别在AB,BC上,AE=CF=$\frac{5}{4}$,O为AC边上的中点,EF交BO于点H,将△BEF沿EF折到△B′EF的位置,OB′=$\sqrt{10}$.
(1)证明:B′H⊥平面ABC;
(2)求二面角B-B′A-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线$\sqrt{2}$ρ=4sin(x+$\frac{π}{4}$)与曲线$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$的位置关系是(  )
A.相交过圆心B.相交C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=x2-2x的递减区间为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的渐近线方程为3x+2y=0,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:$0<α<\frac{π}{2}<β<π,cos(β-\frac{π}{4})=\frac{1}{3}$,$sin(α+β)=\frac{4}{5}$.
(1)求sin2β的值;
(2)设函数f(x)=cosx-sinx,试求 f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.满足条件|z-i|+|z+i|=4的复数z在复平面上对应点的轨迹是(  )
A.一条直线B.两条直线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.
(1)求E的方程;
(2)在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,求出定点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案