精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为,圆的圆心为,一动圆与圆内切,与圆外切.

(1)求动圆圆心的轨迹方程;

(2)过点的直线与曲线交于两点,点是直线上任意点,直线的斜率分别为,试探求的关系,并给出证明.

【答案】(1);(2)成等差数列,证明见解析.

【解析】

1)根据两圆的位置关系,得到,从而得到椭圆的长轴和焦距,求出椭圆的方程;(2)当斜率为时,得到,当斜率不为,设的方程设为,与椭圆联立,得到,再表示出并进行化简,得到,从而得到结论.

(1)设动圆的半径为,动圆与圆内切,与圆外切.

.

两式相加得

由椭圆定义知,点的轨迹是以为焦点,

焦距为,长轴长为

,所以

的椭圆其方程为.

(2)设

斜率为,则

,所以

故猜想成等差数列,

设直线的方程设为

,消去

则有

,所以

所以

所以可以得到,

所以,综上所述,成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a0,函数fx)=|2x+2|+|xa|的最小值为2

1)求实数a的值,并作出yfx)的图象;

2)当m0n0,且m+n2时,m2+n2fx)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为( )

A.20.5B.21元C.21.5元D.22元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量单位:进行了问卷调查,得到如下频率分布直方图:

求频率分布直方图中a的值;

以频率作为概率,试求消费者月饼购买量在的概率;

已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求频率分布直方图中同一组的数据用该组区间的中点值作代表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房产中介统计了深圳市某高档小区从201812月至201911月当月在售二手房均价(单位:万元/平方米)的散点图,如下图所示,图中月份代码112分别对应201812月至201911月的相应月份.

根据散点图选择两个模型进行拟合,根据数据处理得到两个回归方程分别为,并得到以下一些统计量的值:

残差平方和

0.0148557

0.0048781

总偏差平方和

0.069193

1)请利用相关指数判断哪个模型的拟合效果更好;

2)某位购房者拟于20205月份购买深圳市福田区平方米的二手房(欲购房为其家庭首套房).若该小区所有住房的房产证均已满3年,请你利用(1)中拟合效果更好的模型解决以下问题:

i)估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.01万元/平方米)

ii)若该购房者拟用不超过760万元的资金购买该小区一套二手房,试估算其可购买的最大面积(精确到1平方米)

附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按照房屋的计税价格进行征收.(计税价格=房款)

征收方式见下表:

购买首套房面积(平方米)

契税(买方缴纳)的税率

参考数据:

参考公式:相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)设点上,点上(异于极点),若四点依次在同一条直线上,且成等比数列,求的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的极值;

(2)若对任意的,当时,恒成立,求实数的最大值;

(3)若函数恰有两个不相等的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若项数为的单调增数列满足:①;②对任意,存在使得;则称数列具有性质.

1)分别判断数列13471235是否具有性质,并说明理由;

2)若数列具有性质,且.

i)证明数列的项数

ii)求数列中所有项的和的最小值.

查看答案和解析>>

同步练习册答案