精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为α为参数),曲线C2的参数方程为β为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C1C2的极坐标方程;

2)若点A在曲线C1上,点B在曲线C2上,且∠AOB,求|OA||OB|的最大值.

【答案】1ρ4cosθρ2cosθ.(24+2

【解析】

1)利用,消去参数化为普通方程,再将直角坐标方程化为极坐标方程;

2)设出的极坐标方程,利用极坐标意义可得出,运用三角恒等变换,化简,即可求解.

1)曲线C1的参数方程为α为参数),

消去参数α,可得直角坐标方程:(x22+y24

x2+y24x0,把x2+y2ρ2xρcosθ代入可得极坐标方程:

ρ24ρcosθ0,即ρ4cosθ

曲线C2的参数方程为β为参数),

消去参数β,可得直角坐标方程:(x12+y21

x2+y22x0,把x2+y2ρ2xρcosθ代入。

可得极坐标方程:ρ22ρcosθ0,即ρ2cosθ

2)若点A在曲线C1上,点B在曲线C2上,且∠AOB

ρB2cosθρA4cosθ

|OA||OB|2cosθ×4cosθ)=8cosθcosθ-sinθ

4cos2θ-sinθcosθ)=4

4+2

时,|OA||OB|取得最大值4+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,令表示集合所含元素的个数.

1)写出的值;

2)当时,写出的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角ABC所对的边分别为abc,其中A为锐角,且asinB+C)是bcosCccosB的等差中项.

1)求角A的大小;

2)若点D在△ABC的内部,且满足∠CAD=∠ABD,∠CBDAD1,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆 相切,且与圆 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点的平行线交曲线, 两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1,且,设,透光区域的面积为.

(1)求关于的函数关系式,并求出定义域;

(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数.

(1)讨论函数的单调区间;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案