精英家教网 > 高中数学 > 题目详情
8.求函数f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上的最大值.

分析 将f(x)运用分子常数化,可得f(x)=$\frac{1}{\sqrt{1+{x}^{2}}+x}$,考虑分母的单调性,即可得到f(x)的单调性,可得最大值.

解答 解:f(x)=$\sqrt{{x}^{2}+1}$-x
=$\frac{(\sqrt{1+{x}^{2}}+x)(\sqrt{1+{x}^{2}}-x)}{\sqrt{1+{x}^{2}}+x}$
=$\frac{1+{x}^{2}-{x}^{2}}{\sqrt{1+{x}^{2}}+x}$=$\frac{1}{\sqrt{1+{x}^{2}}+x}$,
由于y=$\sqrt{{x}^{2}+1}$和y=x在[1,+∞)上递增,
可得y=$\sqrt{{x}^{2}+1}$+x在[1,+∞)上递增,
则函数f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上递减,
可得当x=1时,f(x)取得最大值为f(1)=$\sqrt{2}$-1.

点评 本题考查函数的最值的求法,注意运用分子常数化,结合函数的单调性,考查化简运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m⊥α,n⊥β,且m⊥n,则α⊥β
C.若m?α,n?β,且α∥β,则m∥nD.若m∥α,n∥β,且m∥n,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a=60.3,b=log0.30.6,c=log6sin1,则a、b、c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图描述的是我国2014年四个季度与2015年前三个季度三大产业GDP累计同比贡献率,以下结论正确的是(  )
A.2015年前三个季度中国GDP累计比较2014年同期增速有上升的趋势
B.相对于2014年,2015年前三个季度第三产业对GDP的贡献率明显增加
C.相对于2014年,2015年前三个季度第二产业对GDP的贡献率明显增加
D.相对于2014年,2015年前三个季度第一产业对GDP的贡献率明显增加

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}中,对任意自然数n∈N*,恒有a1+a2+…+an=2n-1,则a12+a22+a32…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复平面内若复数z=m2(1+i)-m(1+i)-6i所对应的点在第二象限,则实数m的取值范围是(  )
A.(0,3)B.(-2,0)C.D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在二面角α-l-β的棱l上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,若二面角α-l-β的大小为$\frac{π}{3}$,AB=AC=2,BD=3,则CD=(  )
A.$\sqrt{11}$B.$\sqrt{14}$C.$2\sqrt{5}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,输出S的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)满足f(x+1)=lg(2+x)-lg(-x).
(1)求函数f(x)的解析式及定义域;
(2)解不等式f(x)<1;
(3)判断并证明f(x)的单调性.

查看答案和解析>>

同步练习册答案