Èçͼ£º¹ýÅ×ÎïÏßy2=4xÉϵĵãA£¨1£¬2£©×÷ÇÐÏßl½»xÖáÓëÖ±Ïßx=-4·Ö±ðÓÚD£¬B£®¶¯µãPÊÇÅ×ÎïÏßy2=4xÉϵÄÒ»µã£¬µãEÔÚÏ߶ÎAPÉÏ£¬Âú×ã
AE
EP
=¦Ë1
£»µãFÔÚÏ߶ÎBPÉÏ£¬Âú×ã
BF
FP
=¦Ë2
£¬3¦Ë1+2¦Ë2=15ÇÒÔÚ¡÷ABPÖУ¬Ï߶ÎPDÓëEF½»ÓÚµãQ£®
£¨1£©ÇóµãQµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôM£¬NÊÇÖ±Ïßx=-3 ÉϵÄÁ½µã£¬ÇÒ¡ÑO1£º£¨x+2£©2+y2=1ÊÇ¡÷QMNµÄÄÚÇÐÔ²£¬ÊÔÇó¡÷QMNÃæ»ýµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÇÐÏßAB£ºy=x+1£¬D£¨-1£¬0£©£¬B£¨-4£¬-3£©£¬
BD
=£¨3£¬3£©£¬
DA
=£¨2£¬2£©£¬
BD
=
3
2
DA
£¬Ôò
PD
=
PB
+
3
2
PA
1+
3
2
=
2
5
PB
+
3
5
PA
£¬ÓÉ´ËÄÜÇó³öµãQµÄ¹ì¼£·½³Ì£®
£¨2£©ÉèQ£¨x0£¬y0£©£¨x0£¾-
1
4
£©£¬M£¨-3£¬m£©£¬N£¨-3£¬n£©£¬Ôòy2=3x0+
3
4
£¨y0¡Ù
3
2
£©£®ÇÐÏßMQ£ºy-m=
y0-m
x0+3
(x+3)
£¬ÓÉÏàÇпɵ㺣¨x0+1£©m2+2y0m-£¨x0+3£©=0£¬Í¬Àí£¨x0+1£©n2+2y0n-£¨x0+3£©=0£®ÓÉ´ËÄÜÇó³ö¡÷QMNÃæ»ýµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÇÐÏßAB£ºy=x+1£¬D£¨-1£¬0£©£¬
B£¨-4£¬-3£©£¬
BD
=£¨3£¬3£©£¬
DA
=£¨2£¬2£©£¬
BD
=
3
2
DA
£¬
Ôò
PD
=
PB
+
3
2
PA
1+
3
2
=
2
5
PB
+
3
5
PA
£¬
Áî
PQ
=¦Ë
PD
=
2
5
¦Ë
PA

=
3
5
¦Ë(1+¦Ë1)
PE
+
2
5
¦Ë(1+¦Ë2)
PF
£¬
ÓÉÓÚE£¬Q£¬FÈýµã¹²Ïߣ¬ËùÒÔ
3
5
¦Ë(1+¦Ë1)+
2
5
¦Ë(1+¦Ë2)=1
£¬
¼´¦Ë+¦Ë(
3
5
¦Ë1+
2
5
¦Ë2)=1
£¬
ÓÖ3¦Ë1+2¦Ë2=15£¬¹Ê¦Ë=
1
4
£¬Q·Ö
PD
µÄ¶¨±ÈΪ
1
3
£¬
ÉèP£¨x0£¬y0£©£¬Q£¨x£¬y£©£¬Ôò
x=
3x0-1
4
y=
3
4
y0
£¬
¹Ê
x0=
4x+1
3
y0=
4
3
y
£¬µÃy2=3x+
3
4
£¨y¡Ù
3
2
£©
£¨2£©ÉèQ£¨x0£¬y0£©£¨x0£¾-
1
4
£©£¬M£¨-3£¬m£©£¬N£¨-3£¬n£©£¬
Ôòy2=3x0+
3
4
£¨y0¡Ù
3
2
£©
ÇÐÏßMQ£ºy-m=
y0-m
x0+3
(x+3)
£¬
ÓÉÏàÇпɵ㺣¨x0+1£©m2+2y0m-£¨x0+3£©=0£¬
ͬÀí£¨x0+1£©n2+2y0n-£¨x0+3£©=0£®
Öªm£¬nÊÇ·½³Ì£¨x0+1£©x2+2y0x-£¨x0+3£©=0µÄÁ½¸ù
¹Êm+n= 
-2y0
x0+1
£¬m•n=
-(x0+3)
x0+1
£¬
S¡÷QMN=
1
2
|m-n|•(x0+3)

=
1
2
[
12x0+3
(x0+1)2
+
4x0+12
x0+1
](x0+3)2
£¬
Áît=x0+1£¬
Ôòg(t)=
(4t2+20t-9)(t+2)2
t2
£¨t¡Ý
3
4
£©£¬
¶þ´ÎÇ󵼿ÉÖªg¡ä£¨t£©£¾0£¬
¡÷QMNÃæ»ýµÄÈ¡Öµ·¶Î§[
11
33
12
£¬+¡Þ)
£®
µãÆÀ£º±¾Ì⿼²éµãQµÄ¹ì¼£·½³ÌµÄÇ󷨺ÍÇó¡÷QMNÃæ»ýµÄÈ¡Öµ·¶Î§£¬¾ßÌåÉæ¼°µ½Å×ÎïÏßµÄÐÔÖÊ¡¢Ô²µÄÐÔÖʺÍÖ±ÏßÓëԲ׶ÇúÏßµÄÏà¹Ø֪ʶ£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãFµÄÖ±Ïßl½»Å×ÎïÏßÓÚµãA¡¢B£¬½»Æä×¼ÏßÓÚµãC£¬Èô|BC|=2|BF|£¬ÇÒ|AF|=3£¬Ôò´ËÅ×ÎïÏߵķ½³ÌΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

78¡¢Èçͼ£¬¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓëÔ²£¨x-1£©2+y2=1ÓÚA£¬B£¬C£¬DËĵ㣬Ôò|AB|•|CD|=
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãFµÄÖ±Ïßl½»Å×ÎïÏßÓÚµãA¡¢B£¨|AF|£¾|BF|£©£¬½»Æä×¼ÏßÓÚµãC£¬Èô|BC|=2|BF|£¬ÇÒ|AF|=2£¬Ôò´ËÅ×ÎïÏߵķ½³ÌΪ
y2=2x
y2=2x
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãFÇÒÇãб½ÇΪ60¡ãµÄÖ±Ïßl½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬Èô|AF|=3£¬Ôò´ËÅ×ÎïÏß·½³ÌΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¹ýÅ×ÎïÏßy2=4x½¹µãµÄÖ±ÏßÒÀ´Î½»Å×ÎïÏßÓëÔ²£¨x-1£©2+y2=1ÓÚA£¬B£¬C£¬D£¬Ôò
AB
CD
=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸